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Three parametric design systems were tested by the authors to assess their

suitability for undergraduate teaching. We used criteria taken from the

‘cognitive dimensions’ literature and an exercise of typical geometric operations

in ascending order of complexity. For each system the cognitive barriers

associated with the sequence of operations were plotted to create a ‘learning

curve’. Different parametric systems presented distinctly different learning

curves. The test exercise had to be completed in its entirety to assess the

potential challenges which students with different educational levels, skills and

abilities might encounter, so a single expert user conducted the tests. This

research is intended to develop methods, both design exercises and evaluative

criteria that could be used in future empirical studies.
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igital media and working methods are considered to have a pro-

nounced influence on design thinking (Oxman, 2008), therefore

understanding the way parametric systems support parametric

design thinking is of critical importance for both students and educators.

Students will develop their parametric design ability through the use of these

applications. Indeed, the way the selected system presents its functionality

may well be taken by students as the definition of parametric design. There-

fore the influence of parametric design systems on the students and responsi-

bility which goes with this means that it is essential that the available

applications are systematically evaluated. Often the choice of parametric

system is influenced by other extraneous factors such as the ‘platform’ or

the application software associated with the parametric system, where the

platform or application might have already been selected by the user’s insti-

tution. Similarly students with partial knowledge of parametric design may be

influenced to select tools with which they are already familiar even if these

systems may not be best suited to later learning stages. In this study we

have deliberately excluded these extraneous factors and focussed exclusively

on a systematic evaluation of the different parametric design systems.

Learning rates may differ between students. Different parametric software

may be more or less suited to different parametric modelling tasks and to
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Comparative evaluation
different students. All these differences interact. While it may be possible to

observe this type of parametric design learning informally in a classroom

setting, it will be challenging to design controlled empirical tests for students

learning to use parametric design software for the first time, sufficient to pro-

vide a statistically valid description of the learning progress. Additionally,

there are the considerable challenges inherent in coordinating sufficient re-

sources and appropriate student volunteers to make investigation of non-

trivial skill learning practical. Further, such observations may not directly

explain the underlying reasons for ease or difficulty in learning, which are of

interest both to software designers and educators. For these reasons we pro-

pose an alternative approach, which establishes a set of relevant criteria by

which the software can be evaluated, aiming both to limit the subjectivity of

different users and to correspond to particular cognitive factors which explain

potential learning challenges. This is intended to equip a single user, often an

expert, most probably with some existing bias, to make this evaluation with

sufficient objectivity. These two approaches, expert evaluation and empirical

studies, can ideally inform one another, but at least the first should be explored

before the second and it is the first which is the topic of this paper.

The purpose of this evaluation is to explore the cognitive issues involved with

parametric design software which would be experienced by a novice user

rather than the subjective experience of students with particular backgrounds

or levels of skill. This evaluation involved constructing the same abstract para-

metric geometry model with the different systems and evaluating the model

building process with nine criteria developed from the ‘cognitive dimensions’

literature. The design of the test exercise, the development of the evaluative

criteria, the model building activity with the different systems and the review

of the different model building processes with the evaluative criteria has

been done by the authors. The authors have a background in developing, using

and teaching parametric design and design computation. They also have

similar levels of unfamiliarity with the current interfaces and functionality of

the three systems tested. Experts associated with the three software developers

were consulted by the authors to ensure equal knowledge for each system.

In many applications of parametric design for example to architecture, para-

metric modelling involve operations which create and use collections. There-

fore how collections are presented by a parametric design application to the

designer is crucially important. The model building exercise involves:

1. Creating of a 2D array of points

2. Creating a surface using the 2D array of points

3. Creating a set of curves through the points

4. Creating a set of curves through the transpose of the array of points

5. Creating a single curve by making an arbitrary selection of points from

the 2D array
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Figure 1 Five possible learning cu
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While the test model is quite abstract and only exercises a small subset of the

functionality of the parametric design systems, it is difficult to see how the

more advanced functional of a parametric design system can be harnessed

without the user first becoming proficient with this functionality. Therefore

how this functionality is supported is a convenient indicator of the overall suit-

ability of the different parametric systems.
1 Evaluative criteria
The commonly used term ‘learning curves’ describes cognitive challenges over

the duration of a learning process. This concept of the ‘gentle slope’ was first

introduce byMacLean, Carter, L€ovstrand, andMoran (1990) and then further

developed by Myer (2002). Both suggested that in teaching computer science

to novices, programming languages and tools should be selected which pre-

sented a ‘gentle slope’ of concepts of gradually increasing complexity. It is sug-

gested that this approach is also valid for teaching parametric design

[Figure 1].
rves
While all these learning curves may be idealisations they serve as a way to

think about the overall educational challenge, that is: how can parametric

and computational concepts be simplified and made intuitive for the novice

user, while still providing a conceptually valid educational foundation for

the acquisition of parametric and computational design fundamentals should

the novice user wish to proceed to more advanced computational design. Myer

suggested the gentle slope approach may have considerable advantages over

other learning curves.
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The following evaluative criteria are features of the system whose presence or

absence may create cognitive or practical barriers for novice users, changing

the slope of the curve. They are based on Green and Blackwell’s research

into the ‘Cognitive Dimensions of Information Artefacts’ (1998) and on the

capabilities of modelling and programming languages which are generally

considered to be fundamental for their effective use.
1.1 Cognitive dimensions
‘Cognitive dimensions’ describe different aspects of a computer system which

allows or obliges a user to think and act during the use of a system. There are

complex interconnections between cognitive dimensions and the capabilities of

the system. We propose a number of additional dimensions which combine or

extend the original Cognitive Dimensions research.
1.1.1 Abstraction Barrier
Green and Blackwell (1998) offer the following definition: ‘The abstraction

barrier is determined by the minimum number of new abstractions that

must be mastered before using the system.’ Here the emphasis is on the addi-

tional ideas or ways of working whose relevance is not currently appreciated

by the user, but which have to be mastered before the functionality of inter-

ested can be accesses. The abstraction becomes a barrier if the user is oblige

to understand it before the abstraction’s value to the user can be appreciated.

There may be valid arguments that some abstraction barriers are confronted

early in the learning process in order to minimising disruption over the com-

plete process.

Ideally new abstractions should be discovered and applied in the order in

which they appear to be relevant to the user’s interest and where the delta in

understanding between a known abstraction and an unknown abstraction is

within the user’s ability to comprehend. In an educational context the aim is

not to avoid abstractions but to avoid abstractions becoming a barrier.
1.1.2 Semantic interference
This is an additional cognitive dimension which builds on the ‘clear names’

design pattern proposed by Woodbury (2010) as a critical ‘element of para-

metric design’, as follows: ‘Good names are clear; they convey what you

intend. They are meaningful; usually this means they relate to either the

form or function of a design. They are as short as they need to be (and no

shorter)’. If, as Woodbury suggests, that users of parametric design applica-

tions should be extoled to use ‘clear names’ then the design of these parametric

design applications should also use ‘clear names’.
of parametric design systems 147



148
Semantic interference occurs when there is a mismatch between a term and the

meaning to be conveyed. A parametric design application may use a term with

a particular domain-specific or venacular meaning which the novice user may

be familiar with and therefore the novice user might accept the term and its

meaning as definitive. In an educational context this semantics may interfere

with the objectives of the instructor who may want to use the established

conceptually defined terminology with precise meaning.

Semantic interference may also occur when the same terminology has multiple

meanings in the same or different parts of the system or when multiple terms

are used for the same concept or feature of the system.

The origins of some specialised terminologies are essentially metaphors which

have become established. End user computing systems often introduce

un-established metaphors (Barr, 2003). We can describe a ‘metaphor trap’

as a special form of semantic interference where an inappropriate metaphor

is used by the application to describe an underlying computing concept and

the natural language meaning associated with the term does not describe the

precise meaning or generality of the concept, so that the novice user is unaware

of the full scope of the functionality being referred to by the metaphor.

Consider the following progression:

General computing:

I want to transpose the array of numbers

[precise terminology describing an abstract operation being applied to

abstract data]

Domain specific computing [retaining computing abstractions]:

I want to transpose the array of beams

[precise terminology describing an abstract operation applied to domain spe-

cific term: beams]

An example of metaphor based domain specific computing [where arrays are

implemented as a tree data structure and operation on trees use vernacular

metaphors, such as ‘flip’]:

I want to flip the tree of beams

[the vernacular metaphor ‘flip tree’ combined with domain specific term

‘beams’ results in a hybrid language which is neither a valid computational

expression nor understood as a valid in the application domain. Not only

is this confusing but it may also mask the functionality of the abstract

operation]
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1.2 Properties of parametric design systems

1.2.1 Consistency between representations
Most parametric design system offer multiple representations including a

visual graph based data flow representation, geometric representation and

sometimes a text based program representation. However, to help the user

build a unified internal mental model it is important that there is consistency

between these different representations. Specifically for the exercise considered

here, is the apparent geometric organisation [a 2D array of points] reflected in

the logical structuring of the data in the graph based visual programming envi-

ronment? The importance of the consistency of mapping between representa-

tions specifically with parametric design applications has previously been

discussed by Aish and Woodbury (2005) and Harding, Joyce, Shepherd, and

Williams (2012).

1.2.2 Discoverability
This describes how the functionality of the system is presented and docu-

mented so that it can be discovered by the user unaided. If the educational

intent is to teach student users about the underlying concepts in computation

and geometry, then it might be appropriate to use a classification system based

on some clear conceptual basis. For example, the geometry functionality may

be classified as an object-oriented class hierarchy using the ‘dimensionality’ of

different geometry types [0D for points, 1D for curves, 2D for surfaces and 3D

for solids]. The concept of ‘type’ and class hierarchy (from general to specific)

allows the novice user to understand what functionality is common and what

functionality is unique to different types of geometry or other domain specific

aspects of the application. However, without any overall logic, the novice user

is forced to consume additional cognitive resources to directly learn the idio-

syncrasies of the menu structure. This represents an investment on the part of

the user not in generally transferrable knowledge (of the logical classification

of geometry and other parametric and computational concepts) but in the spe-

cifics of a particular parametric design system. This then creates two disincen-

tives for the user to move to a different parametric design system: abandoning

the investment in one system and investing in learning another system.

1.2.3 Flexibility
One of the key issues in the design of a computer system is the flexibility it

offers the user. In the original Cognitive Dimensions research, Green and

Blackwell (1998) define three different dimensions which to describe the conse-

quence for the user to flexibility:

First, does the system requiring the user to perform actions (and therefore to

think about those actions) in an inappropriate order? [Premature

Commitment].
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Second, does the system allow the user to make tentative decisions which can

be subsequently changed? [Provisionality].

Third, how difficult is it to make these subsequently changes? [Viscosity].

Overall parametric design applications based on visual data flow program-

ming data flow are extremely flexible compared to modelling application based

on direct manipulation. While direct manipulation systems offer high levels of

flexibility during initial sketch, changing these models is often extremely

arduous and often require all or substantial parts of the model to be deleted

and for the user ‘to start over’. The principle advantage of parametric design

systems most frequently referred to by users is the capability to revisit and

change previous modelling operations and the consequences of these changes

are automatically propagated through the model, without the user having to

delete and to manually remodelling.

There are also criticisms that once built, complex parametric models are diffi-

cult to change and this inhibits design exploration (Davis, Burry, & Burry,

2011). These comments reinforce earlier conclusions from Burnett et al.

(1995) that there are scaling and usability issues with visual programming.

For example a node in a data flow graph combines: the name, the ‘type’, and

the calculation method used to create its value. While type and method may be

interdependent, in a regular text based programming language the user is free

to change any one of these aspects independently. In a node based system these

options are often not available forcing the user to create a new node, then to

move the connections from the old node to the new node and finally to delete

the old node. A clear example of ‘viscosity’.

1.2.4 Side effects
This is an aspect of the functionality of the system were some minimal change

by the user (for example, to the input data) has a wide ranging and unexpected

effect on the behaviour of the model or program (for example, on the output).

This is a slightly different and extended interpretation to that used in computer

science.

1.2.5 Work arounds
This is modification or additional operations which the user is obliged to add to

the model or program, which from the user’s perspective is neither part of the

design intent and nor appears to be logically required. Work arounds may

also be required to circumvent a previous side effect.Work aroundsmay require

the user to understand new abstractions which are unrelated to the user’s cur-

rent interest and thereforework arounds are likely to introduce abstraction bar-

riers. Work arounds are considered fragile, because they are developed in
Design Studies Vol 52 No. C September 2017
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response to some limitations in the original system. To function correctly the

work around is now dependent on that limitation. If the system is corrected

then the work around may no longer be required and its continued presence

may give the wrong result, which the user may be potentially unaware of.

1.2.6 Convoluted workflow
Consider the situation where the required functionality is supported by the

application. The functionality is documented and no new abstractions are

required to be learnt. Nevertheless to complete the task the user has to adopt

such a complex workflow that the whole process appears to be counterproduc-

tive and discouraging to the point where the task [and hence the application]

might be abandoned.

1.2.7 Liveness
Liveness is a concept borrowed from the performing arts to describe the spon-

taneity and responsiveness of a performance. Liveness is also used as a term to

compare live and recorded performance and the role of life performance

(Auslander, 2008).

In user oriented computing applications ‘Liveness’ is used to describe the

system’s performance and support for interactivity.

In discussing the concept of ‘Liveness’, perhaps the closest comparison to

parametric design systems [used for architectural design] are Digital Music sys-

tems [used for composition and performance]. In this context, Liveness has

been described as ‘a quality of the design experience that indicates how easy

it is for user to get an impression of the end product during intermediate stages

of design’ (Nash & Blackwell, 2014).

In the case of ‘user oriented’ computing applications such as parametric design

systems (as examples of interactive computing) ‘Liveness’ is associated with as-

pects of program performance and user interaction, such as:

� Modeless interaction e Is the user aware (or not aware) of distinct modes of

operation? The user may not be aware of such modes if, for example, the

system’s default mode is ‘continuous execution’.

� Latency e How quickly does a program respond to user events?

� Dynamics e Can the user control the ‘quality’ of program dynamics, for

example by determining the trade-offs between the complexity and

completeness of the model when this is being recomputed in real-time.

� Directness of interactions e How does the user interact with the system, for

example, indirectly by using a keyboard to change the numeric value of

input parameters, via ancillary analogue interactions devices such as sliders

or by direct manipulation of the geometry within the user’s model?
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Figure 2 The completed exercise i

Figure 3 Transposing the

point array using a scripted

expression in the ‘PointSet’

input port of the Curve node
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2 Test results
The exercises require the application of different geometric and logical con-

cepts. The reader is encouraged to imagine how the instructor can maintain

a coherent narrative explaining the various parametric and computational

concepts while at the same time explaining the functionality and terminology

used by the different systems to implement these concepts.
2.1 Generative Components [version 08.11.09.288]
With GenerativeComponents, the complete exercise was easily and directly

achieved in 10 nodes [Figure 2] without any unusual functionality, terminol-

ogy or workarounds. The only problem was a ‘discoverability’ issue, associ-

ated with transposing the point array. This is because there is no

‘Transpose’ node available in the visual programming environment. Instead

the Transpose of the point array [Point01] is encapsulated in an expression

within the input port of the curve01 [Figure 3].
n GenerativeComponents
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Figure 4 The ‘S’ curve was create b

is displayed as part of the flyover

expression code fragment [in the

further point so the collection exp

Comparative evaluation
� Abstraction Barrier: Generally no abstraction barriers, but challenging in one

casewhere a script expressionhad tobeused (for theTranspose function).While

this ability to use script expressions may be extremely useful for an experienced

user, itmaynotbe suitable for anoviceuser.This is because it requires thenovice

user to learn about script notation very early in the use of the system. Ideally, the

whole set of exercises shouldbe completedusingVisual programmingnodes and

then only subsequently should scripting be offered as a more advanced option.

� Semantic Interference [including metaphor trap]: Good, there were no

problems with terminology.

� Consistency between representations: Good, including cross highlighting

between generated geometry and graph node

� Discoverability [of functionality, including logical ordering]: Good, the menu is

clear and easily navigable [Figure 2]. There is an attempt to provide the userwith

an ‘object-oriented’ description of the functionality of the geometry library.

When the cursor hovers over each of the ‘top level’ icons representing different

geometry types, a ‘fly-over’ label appears which documents the different inter-

faces implemented. However, there is no self-discoverable documentation to

describe the methods which each of the interfaces implements, therefore the po-

tential pedagogic advantage of explaining the functionality of the geometry li-

brary in ‘object-oriented’ terms is not completely realised. In addition there

were challenging aspects, for example the ‘Transpose’ function [the use of which

was an essential aspect of the tasks] is not available as a graphnode. It is available

within the script editor. However this is not documented and there is no ‘auto-
y selecting points from the point array directly in the geometry window. Note the identity of the point selected

label with the indexing into the 2D point array. The corresponding graph node is highlighted. The collection

script editor] is being built for the user from the interaction with the geometry model. As the user selects a

ression is automatically extended with a new member
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Figure 5 Once a specific type

of graph node has been

created, the method [or ‘tech-

nique’] used to construct the

geometry can be changed by

selecting from a list of avail-

able methods. This allows

the user to experiment with

different methods, without

having to deleted and re-

create the node and its con-

nections. This adds consider-

ably to the ease of changing

the model

Figure 6 To access properties of a

Therefore properties of nodes can

and reduces the overall node coun
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completion’ in the script editor to offer this and other methods to the user. So

there is no way for the novice user to discover this important functionality.

� Flexibility [of editing, minimising reworking]: Good, the node method can

be changed without having to delete and recreate the node [Figure 5]. Also

the design of the graph node allows the user to reference the XYZ proper-

ties of the point node by adding optional output ports rather than by

creating additional nodes [Figure 6]. No new node had to be added to

the graph to expose these properties.

� Side effects: none detected

� Work arounds: none detected

� Convoluted workflow: none detected. The task could be completed with 10

nodes.

� Liveness [including direct interaction with geometry]: Good: There is the

ability to directly select geometry (for example, to build a new collection

by selecting geometry from an existing collection) [Figure 4]. There is

also the ability to directly interact with geometry in the model and automat-

ically update the graph. (For example: moving points along the axes of co-

ordinate systems, along curves, or on planes or on surfaces).
node, the user can access a drop down menu and select the specific properties of interest to be displayed.

be accessed without having to add additional graph nodes. This gives considerable flexibility to the user

t.
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Figure 7 Creating the points as a
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2.2 Grasshopper [version 0.9.0076]
While it was possible to complete the tasks in Grasshopper, the exercise was

made more difficult by the use of ‘data trees’ as the principle implementation

of collections. This required understanding the rather unusual functionality

and terminology involved. It became apparent that whichever way the points

were created, the novice user would have to learn additional ‘workarounds’ to

complete the tasks.

One approach is to create a tree [or 2D collection] of points [Figure 7]. This is

most probably the logical approach which many users would take since the 2D

structure of the data corresponds to the 2D spatial layout of the point geom-

etry. However to create the surface, the user has to add an additional opera-

tion to ‘flatten’ the 2D collection into a 1D list because the surface creation

node requires a 1D list as input. Effectively the user is having to provide this

additional ‘flatten’ operation (or workaround) to undo the hard coded ‘unflat-

ten’ operation which is built into the surface creation node. Working out what

is happening inside the surface node and then how to circumvent it’s built-in

‘unflatten’ functionality was challenging. An alternative approach is to create

a list [or 1D collection] of points [Figure 8]. This can be directly input into the

surface creation node, but the novice user now has to use the ‘Partition List’

workaround to restructure the points back into a 2D collection in order to

create the curves.

� Abstraction Barrier: Data trees are an important ‘abstract data type’ which

supports a clearly defined set operations. It can also be used to implement

other collection types such as lists and arrays. The issue of data tree is
tree, effectively a 2D array
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Figure 8 Creating the points as a list, effectively a 1D array
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discussed at length by Rutten including a discussion about other data struc-

tures found in high level programming languages and there uses.

Effectively the use of data tree in Grasshopper is an implementation conve-

nience which is exposed as an end-user metaphor. However, from an end-

user’s perspective [both instructor and student] the terminology of ‘trees’

may not be a useful metaphor to explain or harness the concept of arrays.

The question remains whether the intention behind the use of data trees in

Grasshopper is driven by implementation considerations or whether the in-

tentions are pedagogic (Rutten, 2015).

We came to the conclusion that too many cognitive cycles would have to be

spent explaining the relationship between the metaphor [tree, branches, etc.]

and the underlying abstractions [collections, arrays] and in particular having

to explain that the underlying abstractions have characteristics that go

beyond the metaphor. If it is anticipated that the students will progress

beyond visual programming to scripting and programming then they will

have to learn about arrays and indexing anyway, therefore it might be argued

that these concepts should be presented ‘up front’ to the students.

This is not to dispute that data trees is a powerful abstraction which is incred-

ibly valuable when correctly applied to data which is genuinely ‘tree-like’. But

in this context data trees becomes an unnecessary abstraction barrier and a

metaphor trap and it presents the user with a representation which is incon-

sistent with the user’s conceptualisation of the data.

� Semantic Interference [including metaphor trap]: Challenging: The most

important issue when evaluating Grasshopper is the use of data trees

together with the related terminology used to describe operations on data
Design Studies Vol 52 No. C September 2017
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trees, such as Branching, Grafting, Flattening, Path, Flip, etc. These terms

are used to construct an uncomfortable vernacular metaphor which masks

the underlying array concepts. Thinking about the needs of the novice user,

it might have been preferable to directly expose the concept and terminol-

ogy of the ‘array’ or even a consistent ‘list of lists’ concept.

Other terminology in Grasshopper appeared misaligned with the underlying

concepts. For example, the term ‘cross referencing’ in ordinary usage applies

to an instance within a document which refers to related information elsewhere

in the same document. However, in Grasshopper it is used to imply a form of

combinatorial expansion, where a new output list A is created by copying the

original input list A once for each members in the original input list B AND a

new output list B is created by copying the original input list B once for the

every members in the original input list A. The term ‘Cross reference’ does

not seem to be an appropriate description of the underlying process.

Overall, the terminology is highly vernacular and metaphoric. The icons take

the metaphor of the ‘tree’ to near visual excess. The problem is that the

apparent simplicity of metaphor masks some complex functionality and

therefore the value of the metaphor as an ‘intuitive lead-in’ to this function-

ality for the novice user may be lost.

� Consistency between representations: Challenging: An additional problem

with the list approach is that the data structure (a 1D list) does not match

the geometric structure (2D configuration of points) [Figure 8] The user has

the additional cognitive load of understanding the different logical and

spatial representations and translating between the two to understand the

correspondence between the data and geometry. Because the points are

now a single list, the user has to alter the indexing to use a single index

rather than the row and column indices used with the 2D collection,

when selecting points with which to create the ‘S’ curve.

� Discoverability [of functionality, including logical ordering]: The menus are

reasonably well-structured however there are some awkward classifications

for example Field, Grid, Plane, Point, and Vector can only be found under

Vector tab.

� Flexibility [of editing, minimising reworking]: Historically, Grasshopper

was the first visual programming environment where the user directly

created and interacted with the graph, as opposed to the graph being gener-

ated as a by-product of other interactions. However there are also chal-

lenges. For example it is not possible to change the method used by a

node. To change the methods, the node has to be deleted. All the connec-

tions to that node are lost. The node has to be re-created and the connec-

tions re-established. Also to inspect the XYZ coordinate properties of the

point node, an additional node had to be added [Figure 9].

� Side effects: none

� Work arounds: required to mitigate convoluted workflow, see below.

� Convoluted workflow: Challenging: As a consequence of the use of data

trees, there is no single approach to the creation of the points which can
of parametric design systems 157



Figure 9 To inspect the XYZ

properties of a point node, a

‘deconstruct’ node must be

added to the graph
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be used both to create the surface and the curves. Two methods were

explored: the method in Figure 7 required 16 nodes and the method in

Figure 8 required 13 nodes.

� Liveness [including direct interaction with geometry]: Good/Challenging:

While the overall performance of the system in dynamics is good, it would

be preferable if there was better integration with the host application, spe-

cifically generated geometry is not locatable, except if ‘baked’ and then if it

is ‘baked’, it cannot be re-generated. Ideally, all geometry should be locat-

able and re-generatable and the user should not be aware of the distinction

between ‘baked’ and ‘unbaked’ geometry.
2.3 Dynamo [Version 0.8.0.950]
Note: this analysis has been retested on Version 1.1.0.2094. It was possible to

complete the modelling task, but there were significant challenges with the

functionality and terminology of Dynamo [Figure 10], as follows:

� Abstraction Barrier: Challenging: Because of the issues with the dimension-

ality of collections, (see Side effects and Workaround, below) new abstrac-

tions have to be introduced such as ‘normalised depth’ which could

otherwise be avoided.

� Semantic Interference [including metaphor trap]: Challenging: There are oc-

casions when it might be preferable to use terminology which is more pre-

cise and more consistent. For example in the ‘Sequence’ node [Figure 11],

the second argument is ‘Amount’ and the third argument is ‘Step’, but

the explanation (in the ‘flyover’ label) uses the word ‘Space’.

Dynamo uses the term ‘lacing’, while the underlying DesignScript language

uses the term ‘replication’ [Figure 12]. It might be preferable to use a single

consistent term. While the underlying replication functionality can created

‘lacing patterns’, it can also create more complex pattern than the term lacing

might suggest. Lacing is essentially a metaphor that may be masking this

extended functionality.

In addition Dynamo UI uses the term ‘Cross Product’ to describe the gener-

ation of the product set between different inputs sets [Figure 12]. While the

use of the term ‘cross product’ is not incorrect, the more widely accepted

term is ‘Cartesian Product’.
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Figure 10 Creating a 2Dpoint collection. This uses a sequence of X coordinates and a sequence of Y coordinates and the default value [0.0] for Z. This 2D point

collection candirectly be used to create the collection of curves, or a surface [not shown].Note: theZ coordinate is not definedand the default value of zero is used

Figure 11 To create the array of points, the user must first create a number sequence. It might be preferable to use the more precise term ‘length’

rather than the more ambiguous term ‘amount’ and to use the more precise term ‘increment’ rather than the terms ‘step’ and ‘space’
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Figure 12 In Dynamo to create the 2D array of points, the user needs to combine the sequence of X coordinates with the sequence of Y coor-

dinates using the ‘Cross Product’ option. [See ‘Semantic Interference section]

160
Not only is the term ‘Cartesian Product’ used in the underlying DesignScript

language, but there is a Dynamo Node called List.CartesianProduct. Dynamo

also implements the ‘Cross Product’ vector operation. So it would appear that

the creation of the product set is separately referred to as a CrossProduct and

as a Cartesian Product and the term Cross Product is used to describe both a

set operation and a vector operation. It might be preferable in an education

context to have a one-to-one mapping between terminology and

functionality.

� Consistency between representations: Challenging: In Figure 13 there is a

mismatch been the dimensionality of the collection of points [3D] and the

visual representation [2D array].

� Discoverability [of functionality, including logical ordering]: Challenging:

Both the List functionality and the Geometry functionality are presented

with inconsistent menu structures. For example, the ‘GetItemAtIndex’

[the ‘get’ method] is found under menu/core/List (together with 54 other

methods), while the matching ‘insert’ method [which inserts an item into

a list at an index] is found under menu/BuiltIn (together with 33 other list

methods) [Figure 21]. Also, the same term (Geometry) is both the main

and sub-menu name, but this menu structure does not communicate the

essential functional classification: that Curve, Surface and Solid are all

sub classes of Geometry, and that Line, Arc and Circle are all sub classes

of Curve, sharing common properties and methods.

� Flexibility: It is not possible to change the method used by a node. To

change the methods, the node has to be deleted. All the connections to

that node are lost. The node has to be re-created and the connections re-

established. While a single ‘watch’ node can be used to inspect the XYZ co-

ordinate properties of the point node, three separate nodes for the X, Y and

Z properties had to be added [Figure 20] in order to access these values.
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Figure 13 Creating an array of points using a collection of X coordinates and a collection of Y coordinates. In Figure 10, no value was defined for

the Z coordinate, the default value of zero is used and a 2D array of points was created. In this case a single Z coordinate is defined [with the

value zero], but the behaviour alters and a 3D collection of points is created. There is no change in the value of the Z coordinate [which is zero]

just a change from using the default value or explicitly defined value. This change has created an unexpected side effect

Comparative evaluation
� Side effects: Challenging: During the creation of the array of points an

important unanticipated side effect occurred. In Figure 10, when the 2D

point array is initially created there is no explicit value defined for the Z co-

ordinate. Instead the built-in default value [0.0] is used. However, in

Figure 13, if a value is explicitly provided for the Z coordinate [even the

value 0.0 which is the same as the default value] then the replication strategy

‘recognises’ three variables as inputs to the Point node and therefore creates

a 3D array of points. The spatial configuration is a 2D, but the data struc-

ture is a 3D array. This not only gives an ‘inconsistency between represen-

tations’ (noted above) but results in the Curve creation node having the

wrong dimension of input which then fails. So comparing Figures 10 and

13, we can see that the user’s action of simply connecting the Z coordinate

node to the Point.ByCoordinates node, with effectively no change in value

for the Z coordinate, changes the dimensionality of the resulting output.

The established replication strategy in other applications [such as Generative-

Components] or indeed in the underlying DesignScript language [within

Dynamo, see Figure 15] does not add an extra dimension to the output collec-

tion if a single value input is detected, but only when a collection is detected.

So the regular nodes in Dynamo appear to be presenting a different replica-

tion behaviour to that available in the underlying DesignScript language. This

issue is now the subject of a discussion on the Dynamo discussion groups

(Dynamo issue #6528, 2016)
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Figure 14 In Dynamo, in order to correct for the side effect [in Figure 13] the user has to add a ‘work around’, which is to ‘normalise the depth’ of the point

array. But this introduces an addition concept ‘normalise depth’ for the novice user. Having to understand this additional concept might become an ‘abstraction

barrier’ for some novice users

Figure 15 In Dynamo the user adds a transpose node in order to create the alternative set of curves
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Figure 16 An alternative way to create the array of points is to use a code block node and a DesignScript expression with the underlying ‘Point.ByCoor-

dinates method using replication guides <1> and <2> to control the replication behaviour

Figure 17 By selecting different replication guides, either x<1>, y<2> or x<2>, y<1>, the user can control the way the 2D array of points will be built

and therefore the way curves will be built from the array of points
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Figure 18 In Dynamo using the available nodes, to select points to create the ‘S’ curve, the user has to repeat a complex two stage selection process, first

selecting the sub list from the 2D collection and then selecting the specific point from the sub list. There is no multi-index [or path] selection node to select

an item from a multi-dimensional collection. 13 nodes are required to select 4 points

Figure 19 In Dynamo, and using DesignScript within a code block node, it is possible to select points from a collection using indices. In this case the user has

to hand construct this code fragment
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Figure 20 To inspect the XYZ properties of a point node, three separate nodes must be added to the graph

Figure 21 The ‘Insert’ func-

tion for ‘List’ is found under:

‘Builtin Functions/Insert’ sub-

menu [and uses the term

‘element’], while the corre-

sponding ‘Get’ function for

‘List’ is found under ‘Core/

List/Action/GetItemAtIndex’

sub menu and uses the term

‘item’

Comparative evaluation
� Workarounds: Challenging: To correct for this side effect, the user has to

introduce a workaround to reduce the dimensionality of the point array

back to 2D [Figure 14] using the ‘normalised depth’ node. While the

concept that an array can be ‘flattened’ inherent in the ‘normalised depth’

node is important, requiring its use in this context presents an unfortunate

and unnecessary abstraction barrier to the novice user.

Figure 16 shows an alternative way to create the array of points using a code

block node and a DesignScript expression with the underlying ‘Point.ByCoor-

dinates method and replication guides (see Figure 17).

� Convoluted workflow: see Liveness, below.

� Liveness [including direct interaction with geometry]: Challenging: In the

absence of any interaction with the generated geometry, selection tasks may

become extremely arduous. For example, to create the ‘S’ curve [Figure 18],

the user has to repeat a complex two stage selection process, first selecting

the sub list from the 2D collection and then selecting the specific point from

the sub list. There is no multi-index [or path] selection node which can be
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used to select an item from a multi-dimensional collection. This effectively

required theuser todefine 13nodes just to select 4 input points for the ‘S’ curve.

An alternative way to select the points for the ‘S’ curve, is to use a Design-

Script collection expression with indices within a code block node

[Figure 19]. However, the user has to hand construct this code fragment.

This is essentially exactly the same code fragment which is used in Generative-

Components [Figure 4], except that in the case of GenerativeComponents this

code fragment is built automatically by the application in response to the user

interactively selecting points in the geometry window.

To inspect the XYZ properties of the point node, three additional node had to

be added to the graph [Figure 20] compared to one node in Grasshopper

[Figure 9] and no nodes in GenerativeComponents [Figure 6].

3 Analysis
The evaluation of the three parametric design systems is formally comprised of

the stated cognitive criteria detailed above, which exclude influences such as

institutional preferences and prior experience, variations in the ability and

preferences of the students. The evaluation is summarised in Table 1 and visu-

ally presented in Figure 22.

The learning curves in Figure 22 are purely indicative and use the same visual

conventions introduced by Myer (2002). The normal learning activity is char-

acterised by the inclined line and the cognitive challenges are represented by

vertical lines. The height of the vertical line indicates the cognitive challenges

at each stage in the test exercise. However this is not meant to be precisely

quantified because different students with varying levels of interest, abilities

and perseverance may react differently to these challenges.

These cognitive challenges may be classified as:

‘Absolute barriers’

1. The required functionality does not exist [theoretically none of the appli-

cations failed to provide all the functionality because an experienced user

was able to complete the tests. However, there were occasions with each

of the three applications where even an experienced user would have

failed to complete the tests without the direct guidance and intervention

of experts from the respective software vendors].

2. [Discoverability] The required functionality exists but is undocumented,

therefore the functionality would not be discovered by a novice user

[for example: the Transpose function in GenerativeComponents]

‘Effective barriers’: theoretically the novice user should be able to complete the

task. Whether the user overcomes or succumbs to these barriers may depend

on other individual and contextual factors influencing the user’s commitment
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Table 1 Comparative cognitive barriers for the three parametric design systems, for exercises 1e5

Creating a 2D
array of points

Creating a surface
using the 2D
array of points

Creating a set
of curves through
the array of points

Creating a set of
curves through the
transpose of the
array of points

Creating a single curve
by making an arbitrary
selection of points from

the 2D array

GenerativeComponents Discoverability

[lack of discoverability,
for example of
’Transpose’ function]

Grasshopper Semantic interference

[Data Trees]
Consistency of

representation

[Surface required 1D list
of points, when 2D array
would appear more
obvious]

Workaround

[for example to rebuild
the array of points for
use to create curves]

Semantic interference

[for example, the ’Flip’
operation on Data
Trees]

Liveness

[no interactive
selection of points]

Abstraction Barrier

[Data Trees]
Abstraction Barrier

[for example, the ’Flip’
operation on Data
Trees]

Convoluted workflow

[many nodes required
to achieve selection
of points]

Dynamo Semantic Interference

[ambiguous or confusing
terminology in many
nodes: ’cross product’,
’amount’, ’step’]

Side Effect

[2D collection of points
became a 3D collection]

Liveness

[no interactive
selection of points]

Discoverability

[lack of discoverability:
menu structure makes it
difficult to find
appropriate nodes]

Workaround

[necessary to use of
’Flatten’ operation as a
workaround to counter
act the side effect]

Convoluted workflow

[many nodes required
to achieve selection of
points]
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Figure 22 The learning curves for the three parametric design system

168
and perseverance. Both from an educational and practice perspective, it would

be essential to eliminate or reduce these barriers.

3. [Discoverability] The required functionality exists and is documented, but

in such an illogical way that the novice user is unlikely to find [for

example: List methods in the menu structure in Dynamo]

4. [Abstraction barrier] The required functionality is not directly accessible

but a more experience user might be able to infer or ‘reverse engineer’

the functionality out of other features of the system (which is unlikely

for a novice user as this would present additional abstraction barrier).

[for example: Grasshopper Data Trees could be used to emulate arrays]

5. [Side effects] The functionality exist, but creates unexpected side effects

(which require additional concepts to be understood, potentially intro-

ducing additional abstraction barriers) [for example: under some unex-

pected conditions Dynamo replication (or lacing) changes the dimension

of the generated collection]

6. [Workaround] A workaround to the side effects exists [but require addi-

tional concepts to be understood, again potentially introducing additional

abstraction barriers] [for example: Dynamo ‘flatten’ functionality, used to

address the ‘dimensionality’ side effect, mentioned above]

7. [Convoluted workflow] The required functionality exists and is docu-

mented but to complete the task requires a convoluted workflow [for

example: Dynamo required 13 nodes to select 4 points]

’Incorrect pedagogy’

8. [Semantic interference] The required functionality exists but is described

by inappropriate terms therefore leading to an incorrect pedagogy. This
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Comparative evaluation
is particularly important in an educational context. [for example:

Dynamo’s use of the term ‘CrossProduct’, when the term ‘Cartesian Prod-

uct’ might be more appropriate]

It is likely that the above categories indicate different degrees of learning chal-

lenge, and therefore might be used to indicate a more precise gradient on the

curves above. The single ‘absolute’ barrier noted in the Generative

Components curve may be represent a more significant incline in later stages,

whereas some of the ‘effective barriers’ in the early stages of the Grasshopper

and Dynamo curves may, in fact, represent more gradual learning than the

curve may suggest. This level of comparative quantification would require

another level of detailed assessment and is beyond the scope of this initial study.

What is indicated is that there is a distinct difference between the number of

barriers and their temporal distribution. The exercise was designed to contain

operations of increasing complexity, and therefore represent the trajectory of

concept learning over time. The GenerativeComponents curve may be inter-

preted to indicate gradual learning throughout, with a barrier in the middle

to more advanced use; Grasshopper has a number of difficulties, but they

are spaced consistently throughout; Dynamo presents some hurdles to nov-

ices, but then learning is gradual until users are more advanced.
4 Conclusions
The important role of parametric design applications is to present parametric

design concepts to designers and for the designers to be able to use these ap-

plications to express parametric design thinking. In this paper we have used

a standard modelling exercise and a set of criteria inspired by the ‘cognitive di-

mensions’ research to evaluate important conceptual and usability aspects of

three of the main parametric design systems. Our own immediate purpose in

this evaluation was to help select systems which would be suitable for under-

graduate education in parametric design thinking. The broader aim was to

establish a means by which an academic or industry professional, typically

an expert user, can evaluate and anticipate the ease with which novice user

would learn to use a parametric design system. This evaluation necessarily

pre-dated any particular parametric design course and was carried out by

the authors. While the original intention of the study was to select a suitable

system for teaching parametric design, this study has uncovered some major

conceptual and usability concerns with all the available parametric design sys-

tems. Many of these concerns could easily be resolved by simply exposing or

‘repackaging’ the underlying functionality, by changes to the user interface

design, or even by quite minor changes to terminology.

It may be noted that this study does not include empirical observation of

actual novice use, and particularly more formal experiments with real student
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groups. There are several related reasons for this. In practice, novice student

aptitude varies considerably, making reliable observation of the barriers to

learning difficult without quite large statistical samples. Further, a description

of such points of difficulty in a modelling exercise does not explain the under-

lying cognitive cause. It is just such an explanation that we have attempted by

grounding this evaluation entirely in the cognitive dimensions given.

This lack of empirical experiment necessarily limits the conclusions of this

study, in that real student experiences would be required to properly test the

details of the evaluation method: whether the particular cognitive dimensions

used best represent real student samples, whether differences in background or

bias result in different curves, etc. As such, the results must remain generic at

present, referring to broad differences between the software. We anticipate

future observations of actual student use over time would function both as a

test of the particular choice of cognitive dimensions by making qualitative

and quantitative comparisons to the observed learning curves shown here,

and to allow extension of the scope of conclusions. Indeed if there were to

be opportunities for future empirical studies into the way parametric design

thinking is supported by available parametric design tools, then it is hoped

that these studies would be concerned with more than basic usability issues

as reported here, and would be able to focus on more interesting and substan-

tive conceptual and practical issues. It is hoped that feedback from such future

empirical studies will play an important role in informing future software

design decisions and design educational strategies.

In this study the modelling exercise was chosen to present common and essen-

tial parametric modelling concepts and operations of increasing complexity

particularly relevant to architectural design. As reported earlier, the indicative

learning curves from the evaluation of the three parametric design systems sug-

gest three quite different learning profiles. In some cases the cognitive chal-

lenges occur uniformly over the modelling task; in other cases the cognitive

challenges are concentrated at the earlier and later phases. The differences be-

tween these curves could be used to select a suitable parametric design system

for users who have different levels of skill, or to plan teaching strategies, or to

anticipate where students might experience different cognitive difficulties.

It is also recognised that different exercises might result in different learning

curves. For example, in cases where the use and conceptual understanding

of ‘collections’ is not considered an essential aspect of parametric design

thinking, then a modelling task could be constructed which excluded ‘collec-

tions’. This might remove some of the learning barriers present in the initial

stages of the Grasshopper and Dynamo curves and learning these systems

by novice users might be far more rapid. A further investigation of how these

curves might change with exercises which use different parametric design
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Comparative evaluation
concepts may well shed light on why particular parametric design systems are

chosen in different institutional contexts or by different user communities.

There are also important conclusions to be made about the evaluative methods

developed for this study, and how these might inform future software design.

As the original authors of the ‘cognitive dimension’ research suggest (Green &

Blackwell, 1998), there is a need for practical usability tools by which everyday

software developers and educators can assess cognitively-relevant system

properties and identify important system design trade-offs. Therefore, we

should consider the evaluation methods proposed here as the start of an

open discussion to further develop and refine ways to measure the suitability

of parametric design systems.
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