
140

Ivy

1	 The Elephetus project by Anders
Holden Deleuran (CITA/KADK) and
David Reeves (Spatial Slur/ZHA
Code) offers an example application
of mesh segmentation in generative
architectural design. Note that
while this project exhibits many
of the design qualities intended
to be supported by the software
proposed in this paper, and its
development likely required some
of the processes discussed here,
the Ivy tool was not employed.

Andrei Nejur
Technical University of
Cluj-Napoca

Kyle Steinfeld
University of California, BerkeleyBringing a Weighted-Mesh Representation to Bear on

Generative Architectural Design Applications

1

ABSTRACT
Mesh segmentation has become an important and well-researched topic in computational geometry
in recent years (Agathos et al. 2008). As a result, a number of new approaches have been devel-
oped that have led to innovations in a diverse set of problems in computer graphics (CG) (Shamir
2008). Specifically, a range of effective methods for the division of a mesh have recently been
proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser
2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004;
Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2006), random walks (Lai et al.),
core extraction (Katz et al.), tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu
and Zhang 2004), and critical point analysis (Lin et al. 2007), all of which depend upon a weighted
graph representation, typically the dual of the given mesh (Shamir 2008). While these approaches
have been proven effective within the narrowly defined domains of application for which they have
been developed (Chen 2009), they have not been brought to bear on wider classes of problems in
fields outside of CG, specifically on problems relevant to generative architectural design (GAD).

Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the
relevant and recently matured approaches to mesh segmentation in CG that share a common repre-
sentation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized
transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are
often employed by architectural designers for purposes that are distinct from and present a unique

141 PROCEDURAL DESIGN

INTRODUCTION
This paper describes the motivations for the development of a
platform for mesh segmentation suited for the requirements of
contemporary generative architectural design (GAD). The context
for this endeavor is the increased relevance of mesh-based form-
finding and simulation techniques in architectural design and the
maturation of programing and visual scripting, as the related soft-
ware tools find more widespread use. In recent years, a number
of new techniques for form-finding via mesh-based simulation
have taken hold in GAD. These include spring-based physical
simulation models, node-based structural simulations, and
thermodynamic analysis. Such tools have increased the demand
for approaches to mesh creation and manipulation, with meshes
beginning to even challenge the relevance the now-dominant
non-uniform rational Basis spline (NURBS) surface representa-
tion in GAD. It is also notable that the increased relevance of
each of these examples has been enabled by the advent of visual
programming, and by the Grasshopper programming environ-
ment in particular. While meshes have become more widespread
for this audience, approaches to mesh segmentation are not
well-studied in the context of GAD, nor are they well-supported
by existing tools. This research seeks to identify existing relevant
techniques in computer graphics (CG), adapt these techniques to
the unique needs of the generative architectural design audience,
and to produce a framework for their transfer such that they may
be effectively applied in this new domain.

The first part of the paper reviews the relevant literature in
both CG and GAD. It first presents an abbreviated survey of

set of requirements in relation to similar applications that have
enjoyed more focused study in computer science. This paper
presents a survey of similar applications, including thin-sheet
fabrication (Mitani and Suzuki 2004), rendering optimization
(Garland et al. 2001), 3D mesh compression (Taubin et al. 1998),
morphing (Shapira et al. 2008) and mesh simplification (Kalvin
and Taylor 1996), and distinguish the requirements of these
applications from those presented by GAD, including non-re-
finement in advance of the constraining of mesh geometry to
planar-quad faces, and the ability to address a diversity of mesh
features that may or may not be preserved.

Following this survey of existing approaches and unmet needs,
the authors assert that if a generalized framework for working
with graph representations of meshes is developed, allowing
for the interactive adjustment of edge weights, then the recent
developments in mesh segmentation may be better brought to
bear on GAD problems. This paper presents recent work toward
the development of just such a framework, implemented as a
plug-in for the visual programming environment Grasshopper.

technical approaches to mesh segmentation in the context of
CG, including a discussion of the applications for which these
approaches were developed. As will become apparent, many of
the relevant approaches rely on a common representation of the
mesh dual, and proceed through the manipulation of a weighted
graph. The common use of the weighted mesh dual allows for
a number of complementary and overlapping approaches to be
implemented via a generalized approach, and forms the basis of
the development of the software framework proposed below.
The same section details the extent to which mesh segmen-
tation represents an unmet need in architectural design, and
would benefit from the algorithms developed for CG applica-
tions. Several sympathetic approaches like weaving (Xing et al.
2011a) and mesh stripification (Xing et al. 2011b) are presented
here as a survey of architectural projects that have employed
mesh segmentation without the benefit of a supportive toolkit.
From this survey, the requirements for mesh segmentation that
are unique to GAD are derived, and an account of the specific
tasks in design that would benefit from mesh segmentation is
presented. The second part of the paper presents the methods
by which the proposed software framework has been developed.
First, the implementation details of the software tool created for
mesh segmentation and fabrication are presented. The modular
workflow of Ivy for Grasshopper is explained alongside the data
structures and algorithms employed. A few typical workflows
are detailed in this section, which, given the modular nature of
the software and the common representation of the generalized
weighted-graph representation, may be combined in a number of
ways. Following this, we speculate upon the advantages of this
modular technique in connection to the specific needs of GAD
practice and research.

Mesh Segmentation in Computer Graphics
The boundary representation of the three-dimensional mesh has
practically been a steady companion for the digital embodiment
of form since the advent of computer generated imagery. In
order to make use of this geometric data type on the computer
screen, ways to meaningfully depict an otherwise featureless
collection of mesh faces had to be devised. Among those, mesh
segmentation stands as one of the most important. Its appli-
cations span the entire spectrum of mesh use in CG: mesh
interpretation, feature detection, parametrization, multi-res-
olution modeling, mesh editing, morphing, animation, and
compression all rely on some form of mesh segmentation to
exist (Shamir 2008). Different applications that carry distinctive
requirements have prompted a number of distinct techniques
of mesh segmentation that have been well-articulated in
previous work (Agathos et al. 2008; Shamir 2008; Chen et al.
2008). The first part of the literature review to follow functions
as a meta-survey of these techniques, extracting the common

142 Ivy Nejur, Steinfeld

representations and procedures that suggest appropriate transfer
to GAD.

Mesh Segmentation in Generative Architectural Design
The architectural use of discrete surface descriptions in the
service of form generation precedes the invention of the
computer. As far back as the beginning of the last century,
Antoni Gaudí used discrete surface representations in the phys-
ical computation of form. Later, Frei Otto brought the physical
equivalent of a three-dimensional mesh to bear on the elaborate
form-finding techniques that structured much of his design
research. Early applications of the computer in GAD remained
limited to academic research contexts, and regularly employed
the mesh representation, as there were few other options for the
representation of three-dimensional free-form geometry prior
to the development of NURBS. With the advent of commercial-
ly-available CAD platforms, GAD transitioned from academic labs
to applications in practice. As design practitioners were less likely
to develop bespoke geometric routines than CAD researchers,
many of the technologies employed were direct transfers from
CG. This resulted in the occasional mismatch between the
audience for which these technologies were developed and the
manner in which they found application in GAD.

For example, a central concern (Pottmann et al. 2015) of GAD
is free-form surface rationalization, a broad topic that includes
panelization, surface approximation, and constraint-aware design.
As such, those mesh operations destined for use in GAD must
account for a host of additional properties directly derived from
their eventual existence in the physical world. These concerns
are qualitatively different than those applications most often
targeted by CG, even those applications that involve physical
fabrication. Geometric properties such as face size, dimensional
proportion, an ability to produce offsets, number of faces, fair-
ness, singularities, and node valence can often be overlooked
by applications in CG, but have a tremendous impact in their
architectural applications. As comprehensive surveys of mesh
use in free-form architectural design have been well-articulated
in previous work (Pottmann et al. 2015; Glymph et al. 2004;
Liu et al. 2004), in the literature review to follow, we focus on
the geometrical and topological traits of meshes that are most
relevant to the present research. In summary, this survey finds
that mesh segmentation remains relevant in the context of GAD.
Whether the design manifests smooth surfaces or discrete
collections of polyhedral flat surfaces, the ability to rationalize
this geometry—that is to say, to reasonably realize the geometric
design within the limits posed by a given a method of fabrica-
tion—is paramount. As is presented below, the present research
relies heavily on the strong body of research dedicated to the
panelization of architectural surfaces, and to the modeling of

meshes with fabrication-aware constraints (Glymph et al. 2004).
Also brought to bear are the most recent developments related
to the rationalization of meshes for fabrication, most notably
related to papercraft (Mitani and Suzuki 2004), that suggest
application in GAD. Taken together, these two surveys will allow
us to discern the need for and provide the basis of a generalized
framework for mesh segmentation in GAD.

LITERATURE REVIEW
By surveying the most relevant approaches in CG, this section
characterizes the state of the art in mesh segmentation from
technical and theoretical points of view. Then, by surveying the
existing use of meshes for surface rationalization in GAD, we
articulate the requirements of the appropriate transfer of mesh
segmentation techniques from applications adjacent to CG to
those relevant to GAD. A number of algorithms are presented
that were originally developed in CG and that have subsequently
been adapted by the current scope of work. The expression
of graph theory in each of these cases is highlighted, as the
shared reliance on edge-weighted graphs forms the basis of the
common framework proposed below.

Survey of Mesh Segmentation Techniques in CG
While specific variants of routines for the segmentation of

2

3

2	 Creating a dual graph on a triangle mesh. Each face becomes a node in the dual
graph and each non-naked edge becomes an edge in the same dual graph.

3	 A weighted graph diagram and its use in dual graph/mesh segmentation.

4	 A simple diagram of the Kruskal’s algorithm, the basis of the HMC.

5	 Diagram of basic K-Means algorithm steps. 1) Select roots and calculate regions
based on weight of graph edges. 2) Relocate roots to central points of regions. 3)
Recalculate regions based on new roots.

143 PROCEDURAL DESIGN

meshes abound in computer science research—a testament to
the widespread utility of segmentation in general—only a limited
number of algorithms have achieved a strong status, variations
of which recur often in the most current approaches. In the
meta-survey conducted here, 45 papers were examined that
either survey segmentation techniques in general in order to
characterize the state of the art, or that compare two or more
techniques in the context of a specific application. Nearly
all those techniques surveyed implement a weighted-graph
representation, and an overwhelming number relate strongly to
applications in computer graphics, with the techniques demon-
strated very often adapted to the specific needs of a relatively
narrow set of concerns. As the common foundation of these
techniques informs the development of the toolkit proposed
below, thereby allowing for the coordinated application of
different algorithms in the context of GAD, we highlight here
the way in which each technique manifests a weighted graph
representation. To illuminate the mesh segmentation algorithms
discussed below, we employ a common language and notation
for each routine presented. For the sake of clarity, some notions
in the referenced papers will be renamed to fit this unifying
convention. Among the central concepts are the dual graph and
the weighted graph, which we define here. A dual graph (Figure 2)
is a concept central to graph theory, and is the central operation
of mesh segmentation using graph techniques. In the context
of each example below, the faces of the mesh form the nodes
of the graph, and the bounding edges between faces form the
edges of the graph. A weighted graph (Figure 3) is one in which
nodes and/or edges are assigned numeric values that are inter-
preted in cost functions. The “weight” or “cost” associated with a
graph element is used in order to direct a walk on the graph, and
thereby to prioritize certain paths over others. Any number of

processes are used to map costs to elements. Only rarely would
such values be set directly by an end-user. More often, specific
processes are directed by the algorithm and rely on information
found in the geometry of the mesh. In most of the algorithms
examined here, the determination of weights is “hardwired” into
the algorithm.

Hierarchical Mesh Clustering (Garland et al. 2001)
Hierarchical mesh clustering (HMC) (Figure 4) is among the
simplest of the algorithms in this survey, and, like the others
presented here, operates on the dual graph of a mesh. HMC
applies a greedy clustering routine based simply on edge weights
determined by planarity. The algorithm is a straightforward and
relatively simple interpretation of a standard Kruskal or Disjoint
Set minimum spanning tree algorithm on a graph (Skiena 1998).
The most important difference from these standard routines
is the iterative recalculation of the cost for the edges at each
step. First, a Disjoint Set approach is employed, where the dual
graph in the first step is atomized into its connecting nodes. In
this step, each cluster has only one node. In subsequent steps,
using a greedy approach, one edge at a time is contracted and
the clusters separated by the edge are merged into a single
cluster. As this proceeds, the algorithm evaluates each edge
in a greedy fashion based on the cost of contraction. The cost
of each edge is calculated at each step, based on a planarity
measure function of the cluster post-merger. In a variant of this
approach, a measure of the compactness of the cluster shape
may be introduced in the cost calculation, using a value calcu-
lated by dividing the squared perimeter of the cluster by its area.
This achieves a better approximation of the clustering intent. The
time complexity of HMC is usually O(n×log (n)) depending on the
test function.

Several spin-offs of this algorithm have been developed, each
with some improvement or a change geared towards a special-
ized use. One of the most remarkable innovations is an HMC
based on fitting primitives (Athene et al. 2006). The extended
algorithm uses several geometric primitives described through
mathematical functions to decide in the cluster joining process.
From an architectural fabrication point of view, this is important
because the primitives can be used at the end to approximate,
and thus help fabricate, the surface through parts easily created
in standard processes. Moving beyond the particularities of this
routine, any other metric can be used to calculate the cost of
contracting an edge. Such modifications have been applied in
the service of faster radiosity calculation, collision detection,
and surface simplification. A number of similar modifications
have been employed as described below in the service of goals
specific to GAD.

4

5

144 Ivy Nejur, Steinfeld

K-Means Clustering
(Shlafman et al. 2002; Funkhouser et al. 2004)
Like HMC, K-means (Figure 5) clustering is an iterative segmen-
tation algorithm valued in CG applications for its relatively simple
implementation and robust results. The input for the algorithm
is typically an integer number defining the desired number of
segments into which the original mesh will be split. Again, the
dual graph comes into play at several crucial steps. First, in
order to split the mesh, a set of edge weights is computed. Both
papers referenced here make combined use of two properties,
face-angle and edge-traversing-distance, in calculating the
weight value for each edge. Based on these assigned weights,
a central best-connected-point is computed using an all-pairs
minimal-path algorithm, essentially a Dijkstra’s algorithm run
for every node in the original dual graph. Once the first root is
selected, a second is identified as the farthest node from it. The
distance is computed based on the stored values in the cached
all-pair minimal path results. The process continues for any roots
not yet selected, and the last step is repeated by looking for the
most distant node from all the already selected root nodes. Then,
after the root selection process is complete, each node is allotted
to a mesh segment defined by one root, using the same all-pair
weight-based distance calculation. After the initial segmentation
is complete for each segment, a new root is computed. The new
root is the best connected node in the segment nodes, based
on the same all-pairs minimal-path algorithm, but this time,
it is calculated only amongst the nodes in the segment. The
last two steps are then repeated iteratively until the new root
selection stabilizes for each segment on the same node. The
time complexity of the algorithm is O(n^2×log(n)) where n is the
number of faces in the mesh, for the initial all-pair calculation,
plus the time required for the computation of the new roots for
each segment at every subsequent step.

Random Walks (Lai et al. 2009)
Like K-Means and HMC, the random walk segmentation operates
upon a weighted graph, but in contrast with these iterative
approaches, the segmentation occurs in a single step. The
algorithm requires the identification of a number of starting

faces to be used as roots. Based on these, a weight value is
computed for each non-root face that quantifies the likelihood
that a random walk starting from the non-root face will eventu-
ally end up in a given root face (Figure 6). Each non-root face,
then, stores one likelihood value for each root. Once these are
computed, each non-root face is assigned to a cluster associ-
ated with the root with the highest likelihood. The calculation of
each likelihood value proceeds by summing a weighted version
of the likelihoods of each neighboring face. As we might expect,
the weighting factor is directly related to the corresponding
edge-weight, and is calculated in a similar fashion to the edge-
costs in other algorithms. In the paper referenced here, the
edge-weights are assigned by a combination of dihedral angle,
edge-length, and traversal distance. Two variants are presented
that respond to the needs of differing applications: one style of
calculation is more suited for graphical models, while the other
better addresses technical three-dimensional data. The authors
also describe a number of methods for seed selection that add
a supplemental degree of automation to the algorithm. One
approach uses a similar method with the K-means algorithm of
Shlafman et al. (2002), where just a number of desired seeds is
required, which are then distributed according to the weight of
the edges. The other employs a system of particles distributed
across the mesh as connected by virtual springs, the energy of
which are iteratively minimized and distributed, and seed faces
are selected after the system converges. The strength and speed
of this approach is rooted in the way values are calculated for all
the faces of the mesh in one step. The algorithm solves a set of
equations (one calculation for each seed face) through a sparse
linear system. Solving the system yields the values for all the
faces at once. This gives the algorithm a typical running time of
O(n×m×log(m)), where n is the number of seeds and m the total
number of faces in the mesh. As in the previous two algorithms,
this segmentation employs a weighted dual graph at a number of
stages and for assorted processes, and differs essentially in the
particularities of weight calculation.

Feature Point and Core Extraction (Katz et al. 2005)
A different approach to mesh segmentation, albeit one based
on the same ground level concepts from graph theory, is the
Feature Point and Core Extraction technique (FP+CE) proposed
by Sagi Katz, George Leifman and Ayellet Tal. The algorithm
works in multiple steps, all of which make use of the weighted
dual graph of the mesh.

Before the actual calculation starts, the model is preprocessed
using multidimensional scaling (MDS), a technique that trans-
forms the graph such that the Euclidean distances between
vertices approximate their geodesic counterparts. The first
formal step is the prominent feature detection. This happens

6

145 PROCEDURAL DESIGN

by checking if the sum (computed using a version of Dijkstra’s
algorithm) of the geodesic distances of a node to all other nodes
in the graph is larger than any of its neighbor’s sums. If so, the
node is considered a feature node. Second, the mesh “core” is
extracted. The core is considered the body of the mesh devoid of
features and protruding elements. For this, a spherical mirroring
of the mesh is computed and a convex hull is created, such
that the nodes close to the hull in the mirrored version of the
mesh are considered “core” nodes. The initial collection of these
core nodes is extended iteratively until all features have been
separated into individual segments. Then, using a standard graph
traversing technique (such as depth-first-search), all segments are
walked and connected to the core if they don’t contain at least
one feature node.

Although created specifically for application in graphical model
meshes, this method presents a number of elements easily appli-
cable to more general uses, as is discussed in a section to follow.

Shape Diameter Function (Shapira et al. 2008)
The Shape Diameter Function (SDF) represents a unique take
on the general approach of segmenting a mesh based on a set
of values assigned to each face. The main differences are in the
calculation of the values used for the segmentation. The segmen-
tation algorithm itself is a k-way graph cut employed in other
research projects related to mesh segmentation (Shlafman et al.
2002). The distinguishing feature is the two-step calculation of
the segmentation values.

In the first step, a value is computed for each face of the mesh
using a shape diameter function, which serves to describe how

deep the mesh model is at a certain point. For this, a set of rays
are constructed in a conical configuration centering on the eval-
uated point, and oriented in the direction of the inverted face
normal. Based on the validity of the landing point on the other
side of the model, rays are either stored or discarded. The mean
value of any remaining valid rays is computed as the “shape diam-
eter value” (Figure 7) of the face, which may then be clustered in
a soft partition using a Gaussian mixture model and an expec-
tation maximization algorithm. The second step uses a k-way
graph cut to create hard boundaries and adapt the segmentation
to the features of the mesh by factoring a series of geometrical
determinants of the mesh (such as dihedral angle and edge
length) into the calculated face values. The method described in
the paper is again highly dependent on the type of mesh model
presented, and can produce meaningful results only on closed
and non-noisy meshes. However, within this limited subset of
meshes, it is effective at producing meaningful partitions and,
in subsequent steps, to extrapolate those partitions into mesh
skeletons. In this way, SDF represents a potentially applicable
approach to mesh segmentation in GAD, but the meshes in GAD
do not necessarily belong to this limited subset, only insofar as a
designer is able to understand the limits of its application.

Randomized Cuts (Golovinskiy and Funkhouser 2008)
Although not a novel technique per se, the process detailed in
this paper is of interest because it proves the underlying compat-
ibility of mesh segmentation techniques based on dual graph
representation. The research employs a number of algorithms
from the most commonly used ones (all of them already detailed
above in the survey) and randomly switches between tech-
niques in an attempt to find the most consistent cuts in a dual
graph. The mesh is cut into functional parts using the same dual
graph support and the multiple segmentations are analyzed by
a function to determine the most consistent cuts. The process
uses hierarchical clustering, k-means clustering, and min-cut
clustering (a version of hierarchical clustering) to split the graph
multiple times with different random input variables. Each of the
cuts is evaluated by the function, and a score is assigned and in
the end the best scoring cut is selected. This produces the most
consistent possible cut, because no single algorithm and variable
set can produce meaningful segmentations every time (Athene
et al. 2006).

This statement acknowledges the fact that the wealth of mesh
segmentation algorithms and the multitude of research under-
taken in this field related to CG is made up mostly of individual
specialized research geared toward very specific goals. Even if
most of the algorithms employed are general, their implemen-
tation is based on the iterative exploration of their outcome. In
order to produce meaningful results, the tools’ development are

7

6	 Diagram of likelihood calculation for a mesh face that a random walk started in
the face will reach a certain root. Here the start face (light gray) and the two end
faces (dark gray) are connected by two graphs, red and green, which show part
of the chain of potential for a few adjacent faces.

7	 The shape diameter function. Rays are shot from every face of the mesh in the
opposite direction of the normal face. Some of the rays are discarded based
on the angle at which they land on the other side, or the length they travel
inside the mesh. The length values of the kept rays are averaged as the shape
diameter value.

146 Ivy Nejur, Steinfeld

often directed towards a certain behavior. In order to secure
consistent results with every use, many of the values are hard-
wired in the algorithm, thus forsaking exploration with the tool.

Identification of Need in Generative Architectural Design
Applications in CG regard the mesh quite differently than applica-
tions in GAD. In general, CG applications tend to treat a mesh as
a nominally smooth surface that happens to be described using
discrete faces in order to take advantage of the related discrete
computational methods. In contrast, GAD applications more
often rely on the network of connected faces and edges of the
mesh as a simplified representation of architectonic elements,
such as structural framing or facade panels. This basic distinc-
tion leads to a number of important requirements for mesh
segmentation that are unique to GAD. A major exception to this
distinction is physical simulation models, such as energy models
or spring-systems, which are treated as discrete descriptions
of nominally smooth surfaces in GAD. Insofar as GAD regards
meshes as simplified representations of architectonic elements,
many of the requirements for subdivision concern fabrication.
Take, for example, the work surrounding the definition of planar
quadrilateral (PQ) meshes (Glymph et al. 2004; Pottmann et
al. 2015; 2008; 2007; Liu et al. 2004), in which a constrained
mesh finds significance in its ability to represent the curtain wall
panels of a glass building. Some of the routines related to PQ

8

9

meshes rely on the discovery of developable strips, a procedure
that is described as a subset of mesh segmentation in CG, and
may be handled using a weighted-graph approach. Another
more modest example in scope of execution may be found in
the work of Marc Fornes, whose creative practice specializes in
artistic installations. While there are no publications that detail
the processes employed in the design of these projects, we can
surmise that the subdivision of meshes is central to their reali-
zation in that the number of mesh faces (along with the number
of “stripes,” which we may presume to be a unit of subdivision)
is listed prominently in the project credits. A related concern
unique to GAD regards the preservation of the specific features
of a mesh, such as folds, creases, and geometric textures. These
concerns are not well addressed in the existing CG literature,
but as is demonstrated below, are possible to support using a
generalized weighted graph approach. Using mesh segmentation
to enable architectural production (both at full-scale and in the
service of architectural scale models) is an important defining
feature of GAD. This particular issue is rarely a goal in CG, and
as a result, there are hardly any tools explicitly developed for it in
the larger field of computer science. Notable exceptions to the
lack of existing segmentation routines that address the unique
needs of GAD include primitive-fitting routines and applications
in papercraft. The primitive fitting technique (Athene et al. 2006)
suggests application to full-scale architectural fabrication, as
does the mesh-segmentation used for part-grafting pieces of
a mesh model using elements selected from a given library of
forms (Funkhouser et al. 2004). Routines in CG designed for the
fabrication of meshes center on small-scale papercraft (Mitani
and Suzuki 2004; Massarwi et al. 2007), which includes small
models made of thin-sheet materials such as paper, cloth (Julius
et al. 2005), metal, or plastic. The aim of this research is to repro-
duce a natural “look” without the constraint of preserving the
exact input geometry.

Perhaps the most significant mismatch between existing tools
developed for CG and GAD concerns the difference in the
expected cultures of use, and the exploratory nature of the
design process. In GAD applications, software tools are used
primarily as a means for exploration well before any production
takes place. In early stages of the design process, techniques
and approaches are revised often, and multiple algorithms are
often employed in novel combinations to produce results far
beyond what could be anticipated in advance. For this reason,
frameworks that allow access to low-level controls are preferred
by this community over packaged software tools or routines
presented as black-boxes.

8	 The tool menu in one of the wip versions of Ivy for Grasshopper. 1|Create
and decompose MeshGraphs tools; 2| Add weight to MeshGraph; 3|Primary
Segmentation (tree making); 4|Secondary Segmentation; 5|Iterative segmenta-
tion; 6|Special Segmentation; 7|Fabrication; 8|Mesh Info; 9|Other Tools.

9	 Mesh with attached MeshGraph (left) and tree MeshGraph on the same mesh
calculated with Djikstra’s algorithm using dihedral angle as edge weight.

147 PROCEDURAL DESIGN

IVY
Presented above are two surveys: the first details the existing
approaches to mesh segmentation routines in CG, while the
second describes the unique requirements and unmet needs in
GAD for such routines. Here, we bring the common foundational
representation of the weighted graph dual—identified by the first
survey—to bear in the construction of a framework that addresses
the needs and requirements identified by the second survey.

We assert that if mesh segmentation routines are to be brought
to bear on the unique requirements of GAD, then a compre-
hensive and modular framework is needed. The wide range of
specialized algorithms already used for specific narrow tasks in
CG need to be generalized and adapted such that the resulting
framework may be applied more situationally. For this, a common
representation is required so that the different algorithms may be
coordinated and combined by the end-user. Ensuring data trans-
ference between algorithms enables custom aggregation of tools
that go beyond simple input value changes, and into new and
unimagined uses of mesh segmentation. Detailed in this section
are the steps taken towards creating a weighted-graph mesh
segmentation framework for use in GAD, implemented as an
extension for the popular visual scripting platform Grasshopper.
We describe here the core data structures, routines, and
expected workflows supported by this extension, which is named
Ivy, and discuss the extension’s unique synthesis of the mesh
segmentation routines presented above.

Implemented Data Structures & Routines
A weighted graph dual of a mesh, and its reconfiguration as a
minimum-spanning tree via various routines, forms the common
basis of many of the routines surveyed from CG. Here we
describe the implementation of the required data-structures to

represent and manipulate this graph, including the MeshGraph,
MNode, and MEdge types, and the related routines that assign
weights and perform segmentations in a generalized way that is
able to reproduce the routines discussed above. The toolset, as
it was implemented in Grasshopper, is organized according to
an expected workflow for mesh segmentation. This is reflected
by the ordering of the nine groups of components seen in the
nearby diagram (Figure 8). Following the tool groups on the
Grasshopper ribbon in Ivy equals following the intended general
chaining of tools for an expected mesh segmentation.

MeshGraph
The dual graph concept is implemented by Ivy as a data object
called MeshGraph. This provides the core functionality of the
toolset and allows the interconnection of different tools into a
coherent linear flow. A MeshGraph stores a collection of nodes
(MNode) and edges (MEdge) that typically correspond to the
mesh faces and non-naked edges of a given mesh. It also stores
a copy of the given mesh geometry at construction, which allows
for operations such as unfolding and fabrication to occur after
segmentation.

Edgeweights and Nodeweights
The essence of mesh segmentation is the identification of vari-
able properties of the mesh for the purpose of assigning values
to each mesh edge or mesh face. These values, often called
weights or costs, serve as a guide for the segmentation routines.
In Ivy, there is a dedicated tool group that contains routines for
assigning and manipulating weights, including assignment via
dihedral angle, distance between face center points, face size,
and mesh color. Importantly, there are also tools for assigning
arbitrarily calculated weights, which enable the use of any
numerically expressible property.

10	 One step segmentation of hyperbolic paraboloid with added large-scale surface noise. Step (a) the surface and the guide surface; (b) the mesh version of the surface with
a forest of trees resulted from a Kruskal’s algorithm calculation. The weight of the MeshGraph is based on the dihedral angle and the proximity to the base (blue-gray)
surface. In (c) the same forest of graph trees is separated in single-node trees and multi-node trees. Step (d) shows the mesh segmentation in 4 parts and a separation
area of faces in red.

148 Ivy Nejur, Steinfeld

Segmentation Routines
Routines that segment a mesh given its weighted graph dual
represent the largest group of tools in the framework, and also
the most important. Virtually all tools that operate and modify a
graph in Ivy are considered MeshGraph segmentators. Here we
find graph-processing algorithms that make use of already-de-
fined edge or node weights in the service of selecting two
MeshGraph nodes, disconnecting them by removing an edge,
and then updating the graph structure. At times, this requires
operation on a tree, which is expressed as a special case of a
graph. This is why the tool sections in Ivy are divided between
Primary Segmentation, Secondary Segmentation, Iterative
Segmentation, and Special Segmentation.

Primary Segmentation: Tree-Making Routines
The tree-making routines are the standard graph algorithms often
employed for this purpose, including Prim’s, Kruskal’s, Djikstra’s
(Figure 9), and Depth First Search. The construction of a tree
graph is the first step in either splitting a MeshGraph, or preparing
it for segmentation in a subsequent step, as discussed in the
section below on one-step segmentation. This is the main reason
why in the Ivy workflow, converting a dual graph into a tree is
considered primary segmentation. Another reason consists in the
fact that as a result of the dual graph to tree conversion, a forest
of tree graphs can emerge, thus effectively creating a segmenta-
tion of the original mesh (Nejur 2016, 4–8). Figure 10 shows an
example of Disjoint Set tree making and resulted segmentation
and Figure 11 depicts a primary segmentation example based on
multiple root minimum span tree algorithms (MRMSTs).

Secondary and Iterative Segmentation
The next section of segmentation routines includes tools that
segment readymade tree graphs. Secondary segmentation
happens through the selection and removal of tree edges (Ivy
Manual, 9). Through a singular edge removal—a simply connected
graph—a tree is split into two segments (Figure 12).

Another section is dedicated to self-contained iterative algo-
rithms that operate on the original dual MeshGraph. Here we
find the implementation of many of the segmentation routines
identified in the literature review above, including K-Means

11	 One-step segmentation of hyperbolic
paraboloid with added surface noise.
(a) the surface and the guide surface;
(b) the mesh version of the surface
with a forest of trees resulted from a
Kruskal’s algorithm calculation. The
weight is based on the dihedral angle
and the proximity to the base surface.
In (c) the same forest of graph trees
is separated in single-node trees and
multi-node trees. Step (d) shows the
mesh segmentation in 4 parts and a
separation area of faces in red.

12	 A two-step segmentation routine.
The base mesh (a) is used to create
a MeshGraph with edges weighted
according to the dihedral angle
between the faces. Making a tree
from the dual MeshGraph (b) results
in cup-like surfaces connected
with one edge (the least sharp
edge from the rims connecting the
cups). By removing the edges with
the largest weight in the tree (c)
the parts are segmented. No faces
from the original mesh (d) remain
isolated.

11

12

149 PROCEDURAL DESIGN

and HMC, each of which has been adapted to modular visual
programming environment of Grasshopper. Figure 13 shows an
example of the iterative segmentation workflow.

DISCUSSION
In this paper we demonstrated that generative architectural
design, although deeply embedded in the contemporary tech-
niques of digital form-making and representation, still lacks
adapted tools for mesh segmentation. It is clear though that
mesh segmentation is useful and needed in the context of GAD.
However, the specific conditions of generative design claim a
different approach than those of CG, for instance where a lot of
research has already been conducted.

As a result of the identified need for specific mesh segmentation
in GAD, we introduce Ivy, a platform based on the underlying
mathematical concepts that power most of the research in
the field. Ivy brings together a number of tools ported from
CG-based research or developed specifically for the tasks in
GAD. The separate tools and technologies are compatible
through the graph representation of the mesh, which is already
the default data object for most of the research in the field.

The platform implementation for mesh segmentation in
Grasshopper brings many benefits to generative design beyond
mere availability of tools. The possible aggregation of function-
alities facilitated by the visual scripting platform of Grasshopper
and the common graph language proves that the sum of tools
working together is really much more potent than the simple

addition of individual algorithmic benefits. For now, imple-
mentation of mesh segmentation tools in GAD in general, and
Grasshopper specifically, is fairly new, and Ivy was started mostly
as a proof of concept. As a result, there are still speed issues
and limitations when it comes to meshes with many faces.
Optimization of the code to extend usability is one of the goals
for the authors. At the time when this paper was written, only
a few of the algorithms developed for CG research had been
ported to Ivy. The authors hope to extend the range of compo-
nents that bring useful mesh segmentation to GAD. Along with
new segmentation algorithms, the focus of future research and
subsequent papers will fall on mesh segmentation usage in GAD.
Within this more practical area of investigation, a special place
will be dedicated to mesh unrolling. For reasons pertaining to the
size and scope of this paper, the tools and workflow descriptions

1413

13	 An enhanced K-Means segmentation setup in Ivy with automatic detection of
the number of regions. The base, a doubly curved surface with a large over-
lapped noise (a) is overly segmented with a disjoint set (Kruskal’s) algorithm with
a weight limit. This produces a forest of trees with a diverse number of nodes
(b). The weight limit is set so that low weight landscapes can coagulate in larger
trees. By extracting those large trees and calculating a weight center for each of
them we get a very good approximation of the final placement of the k-means
seeds (c). Starting from those seeds, the iterative part of the classic K-means
algorithm reaches a stable state in very few steps. This drastically cuts the run
time of the algorithm, depending on the size and the features of the mesh,
sometimes to less than a third.

14	 Different unrolling strategies of a parametrically generated architectural mesh.
The meshes are segmented in Ivy with the aim to reduce the final number of
pieces needed to unroll the geometry on a flat surface. Shown are four variants
resulted from different weight settings for the MeshGraph. From top to bottom,
left to right: dihedral angle, edge distance from a median curve, orange peel
edge classification starting from the holes, and finally the same orange peel
classification started from the edge.

150 Ivy Nejur, Steinfeld

Chen, Xiaobai, Aleksey Golovinskiy, and Thomas Funkhouser. 2009. “A

Benchmark for 3D Mesh Segmentation.” ACM Transactions on Graphics 28

(3): Article 73.

Fornes, Marc. “MARC FORNES & THEVERYMANY.” Accessed April 26,

2016. https://theverymany.com/.

Funkhouser, Thomas, Michael Kazhdan, Philip Shilane, Patrick Min,

William Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David Dobkin.

2004. “Modeling by Example.” In Proceedings of the 31st International

Conference on Computer Graphics and Interactive Techniques, edited by Joe

Marks. Los Angeles, CA: SIGGRAPH. 652–663.

Garland, Michael, Andrew Willmott, and Paul S. Heckbert. 2001.

“Hierarchical Face Clustering on Polygonal Surfaces.” In Proceedings of the

2001 Symposium on Interactive 3D Graphics. Research Triangle Park, NC:

SI3D. 49–58.

Gelfand, Natasha, and Leonidas J. Guibas. “Shape Segmentation Using

Local Slippage Analysis.” In Proceedings of the 2004 Eurographics/ACM

SIGGRAPH Symposium on Geometry Processing. Nice, France: SGP.

214–223.

Glymph, James, Dennis Shelden, Cristiano Ceccato, Judith Mussel,

and Hans Schober. 2004. “A Parametric Strategy for Free-form Glass

Structures Using Quadrilateral Planar Facets.” Automation in Construction

13 (2): 187–202.

Golovinskiy, Aleksey, and Thomas Funkhouser. 2008. “Randomized Cuts

for 3D Mesh Analysis.” ACM Transactions on Graphics 27 (5): Article 145.

were rather brief. A more in-depth explanation and detailing of
the tools and functionalities of Ivy can be found in the Ivy User
Manual (Nejur 2016). Because Ivy was designed to be a platform,
it enables future research into mesh evaluation, segmentation,
and fabrication as part of the Grasshopper ecosystem. This has
manifested fabrication techniques and mesh exploration strate-
gies that are included with Ivy, but are only briefly mentioned in
this paper. Aside from a few standalone uses mentioned above,
a number of workflows, examples, and practical applications
remain to be presented. This positions the present body of text
as an introduction to the tool and a sample of practical mesh
segmentation use inside the GAD paradigm.

ACKNOWLEDGEMENTS
The paper presents research related to a Fulbright grant that supported

Andrei Nejur as a visiting scholar hosted by Kyle Steinfeld at UC Berkeley.

The development work for the toolset was undertaken using student

feedback from the class of Simon Schleicher.

REFERENCES
Agathos, Alexander, Ioannis Pratikakis, Stavros Perantonis, Nikolaos

Sapidis, and Philip Azariadis. 2007. “3D Mesh Segmentation

Methodologies for CAD Applications.” Computer-Aided Design and

Applications 4 (6): 827–841.

Attene, Marco, Bianca Falcidieno, and Michela Spagnuolo. 2006.

“Hierarchical Mesh Segmentation Based on Fitting Primitives.” The Visual

Computer 22 (3): 181–193.

15 A speculative study of the use of Ivy in the service of mesh unrolling. Connecting tabs of arbitrary geometry may be added at each connection edge.

151 PROCEDURAL DESIGN

Julius, Dan, Vladislav Kraevoy, and Alla Sheffer. 2005. “D-Charts: Quasi-

Developable Mesh Segmentation.” Computer Graphics Forum 24 (3):

581–590.

Kalvin, Alan D, and Russell H. Taylor. 1996. “Superfaces: Polygonal

Mesh Simplification with Bounded Error.” IEEE Computer Graphics and

Applications 16 (3): 64–77.

Katz, Sagi, and Ayellet Tal. 2003. “Hierarchical Mesh Decomposition

Using Fuzzy Clustering and Cuts.” ACM Transactions on Graphics 22 (3):

954–961.

Katz, Sagi, George Leifman, and Ayellet Tal. 2005. “Mesh Segmentation

Using Feature Point and Core Extraction.” The Visual Computer 21 (8):

649–658.

Lai, Yu-Kun, Shi-Min Hu, Ralph R. Martin, and Paul L. Rosin. 2009.

“Rapid and Effective Segmentation of 3D Models Using Random Walks.”

Computer Aided Geometric Design 26 (6): 665–679.

Lin, Hsueh-Yi Sean, Hong-Yuan Mark Liao, and Ja-Chen Lin. 2007. “Visual

Salience-Guided Mesh Decomposition.” IEEE Transactions on Multimedia 9

(1): 46–57.

Liu, Rong, and Hao Zhang. 2004. “Segmentation of 3D Meshes through

Spectral Clustering.” In Proceedings of the 12th Pacific Conference on

Computer Graphics and Applications, Seoul: PG. 298–305.

Mangan, Alan P., and Ross T. Whitaker. 1999. “Partitioning 3D Surface

Meshes Using Watershed Segmentation.” IEEE Transactions on Visualization

and Computer Graphics 5 (4): 308–321.

Massarwi, Fady, Craig Gotsman, and Gershon Elber. 2007. “Papercraft

Models Using Generalized Cylinders.” In Proceedings of the 15th Pacific

Conference on Computer Graphics and Applications. Maui, Hawaii: PG.

148–157.

Mitani, Jun, and Hiromasa Suzuki. 2004. “Making Papercraft Toys from

Meshes Using Strip-based Approximate Unfolding.” ACM Transactions on

Graphics 23 (3): 259–263.

Mortara, Michela, Giuseppe Patané, Michela Spagnuolo, Bianca

Falcidieno, and Jarek Rossignac. 2004. “Plumber: A Method For a

Multi-Scale Decomposition of 3D Shapes Into Tubular Primitives and

Bodies.” In Proceedings of the Ninth ACM Symposium on Solid Modeling and

Applications, Genova, Italy: SM. 339–344.

Nejur, Andrei. 2016. “Ivy for Grasshopper Manual: Version 0.802.” Digital

Design Research Repository Andrei Nejur. Accessed July 01, 2016. http://

research.n2arh.ro/ivy/manual.

Pottmann, Helmut, Michael Eigensatz, Amir Vaxman, and Johannes

Wallner. 2015. “Architectural Geometry.” Computers & Graphics 47:

145–164.

Pottmann, Helmut, Alexander Schiftner, Pengbo Bo, Heinz Schmiedhofer,

Wenping Wang, Niccolo Baldassini, and Johannes Wallner. 2008.

“Freeform Surfaces from Single Curved Panels.” ACM Transactions on

Graphics 27 (3): Article 76.

Pottmann, Helmut, Yang Liu, Johannes Wallner, Alexander Bobenko, and

Wenping Wang. 2007. “Geometry of Multi-layer Freeform Structures for

Architecture.” ACM Transactions on Graphics 26 (3): Article 65.

Shamir, Ariel. 2008. “A Survey on Mesh Segmentation Techniques.”

Computer Graphics Forum 27 (6): 1539–1556.

Shapira, Lior, Ariel Shamir, and Daniel Cohen-Or. 2008. “Consistent Mesh

Partitioning and Skeletonisation Using the Shape Diameter Function.” The

Visual Computer 24 (4): 249–259.

Shlafman, Shymon, Ayellet Tal, and Sagi Katz. 2002. “Metamorphosis of

Polyhedral Surfaces Using Decomposition.” Computer Graphics Forum 21

(3): 219–228.

Skiena, Steven S. 1998. The Algorithm Design Manual. Santa Clara, CA:

TELOS—the Electronic Library of Science.

Stork, David G., Richard O. Duda, and Elad Yom-Tov. 2004. Computer

Manual in MATLAB to Accompany Pattern Classification. Hoboken, NJ:

Wiley-Interscience.

Taubin, Gabriel, and Jarek Rossignac. 1998. “Geometric Compression

through Topological Surgery.” ACM Transactions on Graphics 17 (2):

84–115.

Xing, Qing, Gabriel Esquivel, Ergun Akleman, Jianer Chen, and Jonathan

Gross. 2011. “Band Decomposition of 2-Manifold Meshes for Physical

Construction of Large Structures.” In Posters of the 38th International

Conference and Exhibition on Computer Graphics and Interactive Techniques.

Vancouver, BC: SIGGRAPH.

Xing, Qing, Gabriel Esquivel, Ryan Collier, Michael Tomaso, and Ergun

Akleman. 2011. “Spulenkorb: Utilize Weaving Methods in Architectural

Design.” In Proceedings of the 14th Annual Bridges Conference:

Mathematics, Music, Art, Architecture, Culture., edited by Reza Sarhangi and

Carlo H. Séquin. Coimbra, Portugal: Bridges. 163–170.

Yamauchi, Hitoshi, Stefan Gumhold, Rhaleb Zayer, and Hans-Peter Seidel.

2005. “Mesh Segmentation Driven by Gaussian Curvature.” The Visual

Computer 21 (8–10): 659–668.

IMAGE CREDITS
Figure 1: Deleuran and Reeves, 2015

Figures 2–15: © Nejur, 2016

Andrei Nejur is an Assistant Lecturer in the Architecture Department at

the Technical University of Cluj-Napoca

Kyle Steinfeld is an Assistant Professor specializing in digital design

technologies in the Department of Architecture at the University of

California, Berkeley.

	Table of Contents
	Foreword | Complex Entanglements
	Introduction | Posthuman Frontiers
	Procedural Design
	Gerber | A Multi-Agent System for Facade Design
	Savov | 20,000 Blocks
	Johnson | Architectural Heat Maps
	Sanchez | Combinatorial design
	Andréen | Emergent Structures Assembled by Large Swarms of Simple Robots
	Rusenova | Feedback- and Data-driven Design
	Harrison | What Bricks Want
	Parker | Form-Making in SIFT Imaged Environments
	Klemmt | Load Responsive Angiogenesis Networks
	Smith | Machine Learning Integration for Adaptive Building Envelopes
	Das | Space Plan Generator
	Davis | Evaluating Buildings with Computation and Machine Learning
	Ferrarello | The Tectonic of the Hybrid Real
	Koschitz | Beetle Blocks
	Nejur | Ivy

	Generative Robotics
	Brugnaro | Robotic Softness
	Braumann | Towards New Robotic Design Tools
	Moorman | RoboSense
	Vasey | Collaborative Construction
	Yuan | Robotic Fabrication of Structural Performance-based Timber Grid-shell
	Devadass | Robotic Fabrication of Non-Standard Material
	Schwartz | Use of a Low-Cost Humanoid for Tiling as a Study in On-Site Fabrication
	Schwinn | Robotic Sewing

	Programmable Matter
	Pineda | The Grammar of Crystallographic Expression
	Ramirez-Figueroa | Bacterial Hygromorphs
	Sharmin | Knit Architecture
	Schleicher | Bending-Active Plates
	�Körner | Bio-Inspired Kinetic Curved-Line Folding for Architectural Applications
	Ramsgaard Thomsen | Knit as bespoke material practice for architecture
	Wang | Pneumatic Textile System
	Yu | Highly Informed Robotic 3D Printed Polygon Mesh
	Nicholas | Concepts and Methodologies for Multiscale Modeling
	Huang | From Bones to Bricks
	Wit | Composite Systems for Lightweight Architectures
	Retsin | Discrete Computational Methods for Robotic Additive Manufacturing

	Posthuman Engagements
	Leach | Digital Tool Thinking
	Farahi | Caress of the Gaze
	Beesley | Hybrid Sentient Canopy
	Costa Maia | Researching Inhabitant Agency in Interactive Architecture
	López | Human Touch in Digital Fabrication
	Eisinger | Formeta:3D
	Pinochet | Antithetical Colloquy

	Material Frontiers
	Tabbarah | Almost Natural Shelter
	Twose | Experimental Material Research
	Beaman | Landscapes After The Bifurcation of Nature
	Clifford | The McKnelly Megalith
	Estévez | Towards Genetic Posthuman Frontiers in Architecture & Design
	Dade-Robertson | Thinking Soils
	Sollazzo | Symbiotic Associations
	Franzke | Fluid Morphologies
	Derme | Growth Based Fabrication Techniques for Bacterial Cellulose

	ACADIA 2016 Credits
	Conference Chairs
	Session Moderators
	ACADIA Organization
	Conference Management & Production Credits
	Peer Review Committee
	ACADIA 2016 Sponsors

