
446

Ivy

1	 A papercraft model fabricated using
Ivy.

Andrei Nejur
Technical University of 	
Cluj-Napoca

Kyle Steinfeld
University of California, Berkeley

Progress in Developing Practical Applications for a Weighted-Mesh 	
Representation for Use in Generative Architectural Design

1

ABSTRACT
This paper presents progress in the development of practical applications for graph representations
of meshes for a variety of problems relevant to generative architectural design (GAD). In previous
work (Nejur and Steinfeld 2016), the authors demonstrated that while approaches to marrying
mesh and graph representations drawn from computer graphics (CG) can be effective within the
domains of applications for which they have been developed, they have not adequately addressed
wider classes of problems in GAD. There, the authors asserted that a generalized framework for
working with graph representations of meshes can effectively bring recent advances in mesh
segmentation to bear on GAD problems, a utility demonstrated through the development of a
plug-in for the visual programming environment Grasshopper. Here, we describe a number of
implemented solutions to mesh segmentation and transformation problems, articulated as a series
of additional features developed as a part of this same software. Included are problems of mesh
segmentation approached through the creation of acyclic connected graphs (trees); problems of
mesh transformations, such as those that unfold a segmented mesh in anticipation of fabrication;
and problems of geometry generation in relation to a segmented mesh, as demonstrated through a
generalized approach to mesh weaving. We present these features in the context of their potential
applications in GAD and provide a limited set of examples for their use.

447ACADIA 2017 | DISCIPLINES + DISRUPTION

INTRODUCTION
In previous work (Nejur and Steinfeld 2016), a thorough review
of literature from computer graphics (CG) revealed a number
of approaches to the segmentation of meshes that suggested
fruitful application in generative architectural design (GAD).
Examined individually, most of the approaches described there
could be found either in basic graph theory (Skiena 1998) or
in stand-alone tools already developed for CG. From these
precedents, the authors outlined and implemented a software
framework that targets applications in GAD. Other than the
synthesis of otherwise disparate routines in an environment
accessible to architectural designers, what sets this framework
apart is the modular versatility and customization that it affords.
This modular approach allows for a variety of possible work-
flows, and for multiple routines to be customized, juxtaposed,
and chained to create entirely new functionalities. Expanding
upon this previous work, this paper describes some of the
novel applications enabled by this characteristic of the frame-
work, and presents a selection of approaches that immediately
emerge from it. We conclude that the marriage of a mesh with a
weighted graph representing the dual of this mesh holds utility
beyond the initial purpose for which it was designed (mesh
segmentation), and may be employed to address a variety of
problems relevant to GAD.

In the pages that follow, we first discuss the unique features of
user interface and interaction that are required by the framework
approach, and that allow users to access the low-level data struc-
tures in a manner that may be easily understood by a community
of users with little direct experience with graph representations.
Next, we detail segmentation workflows for generating acyclic
connected graphs (trees) on meshes—a structure encapsulated
by a data type termed MeshGraph. These workflows lie at the
heart of the implemented tools, and comprise the core function-
ality for which our framework was originally developed.

Although mesh segmentation was the intended application
of this framework, the remainder of the paper demonstrates
the unexpected utility of the MeshGraph structure. We begin
by describing a range of geometric transformations of meshes
that rely on the pre-existence of related trees. These include
unfolding, as well as a number of other routines that anticipate
the needs of architectural fabrication. Finally, we present some
recent work on geometry generation in relation to meshes that,
while not anticipated at the outset of the development of the
tool, is suggestive of a promising territory for future work. Before
detailing the work performed in this scope, in the section below
we briefly recap some important concepts, terms, and data types
defined in a previous scope, and that continue to hold relevance
here.

Recap of Concepts and Terms
The dual graph is a concept central to graph theory, and is the
central operation of mesh segmentation using graph techniques.
On a triangular mesh, each face of the mesh becomes a node in
the graph, and each non-naked edge of the mesh becomes an
edge in the graph. The dual graph concept is implemented by Ivy
as a data object called MeshGraph.

A weighted graph is one in which nodes and/or edges are
assigned numeric values that are interpreted in cost func-
tions. All of the mesh segmentation routines discussed here
rely upon routines for determining node and edge weights in
particular configurations. In Ivy, there is a dedicated tool group
that contains routines for assigning and manipulating weights,
including assignment via dihedral angle, distance between face
center points, face size, and mesh color.

In graph theory, a tree is a special kind of graph that is both
directional and acyclicly connected, which is to say that any two
nodes are connected by exactly one path. This is a useful prop-
erty in GAD, in that any mesh dual that holds the properties of a
tree may be unfolded in a straightforward manner.

Borrowing from techniques in CG, segmentation routines in Ivy
are described as the process of converting a weighted dual graph
into a single tree or a “forest” of tree graphs in relation to a mesh.

USER INTERFACE AND INTERACTION
Leitão, Santos, and Lopes (2012) observed that within the GAD
community, frameworks that allow access to low-level controls
are preferred over the “black boxes” of packaged software tools
or routines. This is due to the nature of the early stages of the
design process, in which techniques and approaches are revised
often, and multiple algorithms are often tested in combinations
that are difficult to be anticipated in advance. While a frame-
work approach offers significant advantages in this regard, it also
brings to bear a number of demands concerning user interface
and interaction. Prominent among these is the need to clearly
communicate and offer access to low-level data. In Grasshopper,
this happens by default for most geometrical data. For custom
data, however, visual information needs to be extracted by the
designer at every step and converted into visible geometry for
feedback. Ivy addresses this issue by providing visual repre-
sentations of important lower-level information, including the
weights of a MeshGraph, and of the spatial transformations of an
unfolding routine.

MeshGraph Visualization
To assist the user in understanding the nature of the mesh-to-
graph relationship, Ivy provides an enhanced preview for the

448

MeshGraph custom data object. This expands the normal mesh
preview from Grasshopper with additional data. On top of the
base mesh, a set of polylines and points are displayed that corre-
spond to the geometric position of the graph edges and nodes.
The graph preview offers modes that can graphically depict the
weight of edges/nodes or the depth of a single element in a tree.
In this way, a weight landscape of a mesh or the depth of a tree
can be intuitively understood before these structures are put to
use.

In addition to the visualization of a MeshGraph, a special
component related to a mesh unfolding workflow (discussed
below) offers the ability to animate the unfolding process in two
different ways: coefficient-based and step based. The coeffi-
cient-based animation varies the angle used to rotate each mesh
face using a slider. The step-based animation unfold applies
transformations in a limited number of steps, starting from the
root of the graph and proceeding toward the leafs. These two
methods may be used in combination, which allows the designer
to trace back and understand the relationship between fabrica-
tion data and a mesh form.

TREE GENERATION AND SEGMENTATION
The dominant approaches to mesh segmentation in CG center on
the definition of acyclic connected graphs, otherwise known as
“trees.” Just as the defining of a weighted graph dual of a mesh
(and the later reconfiguration of this graph as a tree) forms the

common basis of many of the routines surveyed from CG, so too
do processes figure prominently in the core functionality of the
Ivy plugin. In this section, we describe workflows for the genera-
tion of trees in Ivy in the service of mesh segmentation.

Basic Segmentation Routines
The largest group of routines in Ivy concern mesh segmentation,
a process that includes graph processing, the assigning of edge
and/or node weights, and the application of a weighted dual
graph in order to identify one or more minimum-spanning trees
on a mesh. As a brief overview of how rudimentary MeshGraph
segmentation works was presented in a previous scope of work
(Nejur and Steinfeld 2016), here we will discuss and classify the
segmentation processes from the perspective of the expected
outcomes they produce. All segmentation algorithms are housed
in one of four sections on the Grasshopper ribbon, and may
be chained in a variety of configurations in order to produce a
wide variation of behaviors and results. The section names listed
below are illustrative of the tools they contain:

•	 One-Step Segmentation components support instant
MeshGraph slicing and segmentation through tree graph
spanning.

•	 Two-Step Segmentation components support further decom-
position of the spanned tree.

•	 Iterative Segmentation components support loop routines
designed to tackle difficult-to-define or ambiguous segmen-
tation criteria

•	 Special Segmentation components provide production-ori-
ented routines that use data from other segmentations and
validate it for other scopes, such as fabrication.

Besides the segmentation outcomes that may be directly related
to architectural fabrication (as discussed in a section below), we
may observe that the basic segmentation routines enabled by
the modular nature of the Ivy framework allow for a number
of other useful outcomes. Prominent among these are feature
extraction and separation, and feature reduction or shape simpli-
fication. The former concerns the identification and extraction
of important geometric surface features—such as finding and
separating finger from hand, or limb from body—while the latter
relates to reducing the number of polygons while maintaining
quality. While neither of these applications (demonstrated in the
nearby images) are novel, especially in the context of CG (Shamir
2008), neither have they been thoroughly considered in a GAD
context, where they hold potentially significant implications for
linking fabrication concerns to design models.

Another area where segmentation tools can bring added value is
in topology exploration. A number of graph-spanning tools are
implemented in Ivy (such as minimal path) that, in conjunction

2

3

2	 Different MeshGraph previews in Ivy. From left to right: Simple enhanced
preview, Weight enhanced preview, Leaf distance enhanced preview.

3	 The visual unroll component can be animated in two different ways with sliders.
Coefficient and Steps.

Ivy Nejur, Steinfeld

449ACADIA 2017 | DISCIPLINES + DISRUPTION

with an intelligently defined weight landscape, can reveal other-
wise imperceptible information about the configuration of a
mesh, as demonstrated by the nearby image.

Agent Segmentation
As discussed elsewhere (Nejur and Steinfeld 2016), the base data
object in Ivy is the MeshGraph, a data object that adds informa-
tion to the classical Rhino/Grasshopper mesh, and is primarily
used for segmentation via the generation of trees following work
in CG. However, other approaches to segmentation may take
advantage of this same structure. Here we describe such an
alternative approach that employs a multi-agent system.

In Ivy, MAgents are extensions of MeshGraph objects that
include behavioural traits and awareness towards other nearby
agents on the same mesh. Technically, the MAgent object stores
a reference to a MeshGraph segment as a member, as well as a
reference to an unsegmented MeshGraph, and miscellaneous
other routines for tracking graph nodes already processed by
other MAgent instances. This structure allows for segmentation
behaviours beyond those that directly follow a weight landscape.
At the time of writing, two base behaviours have been defined
in Ivy, an explore behavior and a consume behavior, as discussed
below. Further, an API has been provided to allow for the
bespoke definition of additional behaviors.

The two base behaviours of the MAgent object are based upon
a simplified model of slime mold (Physarum polycephalum)
growth. The explore behaviour of an agent extends with one
node of the MeshGraph segment, starting from each leaf of
the segment. Here, growth is attempted in divergent directions
so that the growing tendrils do not intersect. The “consume”
behaviour works in a similar way, but its marginal nodes expand
at each step in all available directions, thereby producing a
blanket growth effect similar to a weighted breadth-first search.
Any combination of MAgents may be deployed simultaneously or
in succession, where each agent has a lifespan and new agents
are born after some expire. All behaviours respect the weight

landscape and can be constrained to arbitrary weight limits set
per agent, a feature that adds yet another layer of variation to
the possible agent segmentation outcomes.

The set of tools packaged with Ivy contains two compiled
components that work with MAgent construct, but are intended
as examples of simple behaviours. The real potential of agents
comes from the Ivy API, however, as this approach permits
complex chains of behavioural decisions and even the addition of
new behaviours.

GEOMETRIC TRANSFORMATIONS
BASED ON TREES
Unfolding polygon meshes using acyclic connected graphs (trees)
demonstrates that this data structure holds utility beyond mesh
segmentation, and is one of the main applications for which Ivy
was designed. The aim of the routines described in this section
is the generation of meaningful two-dimensional fabrication data
from any given three-dimensional polyhedral two-manifold mesh
with a reasonable number of faces. In Ivy, unfolding is described
as an extension of the segmentation workflow, and may be
applied following any segmentation described above.

4 5

6

4	 Result of automatic feature detec-
tion with k-means algorithm in Ivy.

5	 Minimal path on a mesh based on
height of edge midpoint as a weight
landscape.

6	 Snapshot of an agent segmenta-
tion with linear walkers sampling
a weight landscape based on
directional affinity with a provided
vector.

450

Unfolding Routines
To perform a dedicated unfolding of a mesh without prior
segmentation, the only prerequisite is the construction of a
spanning tree. As detailed in Nejur and Steinfeld (2016), although
this step may involve graph-edge slicing, it does not necessarily
qualify as segmentation, because the cuts do not produce
discrete pieces. Instead, this process merely ensures that the
MeshGraph is acyclicly connected, which is to say that there
are no circuits in the graph, and that between any given pair of
nodes there is only one possible connection route. Since this is
the only condition, a simple breadth-first search algorithm may
suffice to prepare a mesh for unfolding. Given this simple prereq-
uisite, even if there is no other preparation for the flattening of
a given mesh, the implemented unfolder component in Ivy can
handle a range of potential problems, and a usable unfold is reli-
ably produced regardless of the previous segmentation strategy.

The process of unfolding is as follows: starting from the leaves
of the graph tree, each leaf mesh face is rotated about its edge
toward the neighbouring face in order to bring the two into
alignment; the two faces are then rotated about the edge of the
next connected face; this process repeats until the root of the
graph (or another strand of already unfolded faces) is reached.
Even though any polyhedral shape expressed as a tree graph is
unfoldable, it is rare to happen upon a case in which an unfold
with all the properties required for fabrication are met: almost
all trees become overlapped in their unfolded state. In order
to avoid this, the unfolder performs additional segmentations
on the graph based on the readout from the unfold overlaps.
Faces of the mesh are checked for collision on the unfold

plane, and the original tree is split to address these overlaps. To
minimize such cuts, and maximize segment size, the algorithm
splits the tree as far away as possible (measured topologically)
from the colliding faces. In tree topology terms, this is at the
earliest common ancestor of the colliding faces. This approach
to addressing unfolded collisions offers the useful property of
resolving multiple overlaps simultaneously.

While the above process will suffice for a rough unfold, as
established by Pottmann et al. (2015) and Attene, Falcidieno,
and Spagnuolo (2006) through primitive-based segmentation, a
weight-based tree segmentation is much more appropriate for a
controlled unfold. Ivy offers a combination of these approaches:
through a weighted guidance of tree growth, and/or secondary
segmentation in a subsequent step, edges or edge chains that
might produce overlaps can be identified and removed from
the start. This results in less splitting to be handled by the unroll
routine, and a more predictable set of resulting flat segments.

Any discussion of segmentation for fabrication must address the
topic of stripification. Stripification, a process by which single
face mesh strands are identified, is generally regarded as one of
the best ways to decompose a mesh while avoiding overlaps in
the unfolded state. Ivy implements research presented in Taubin
and Rossignac (1998) as an orange-peel algorithm, and also
accommodates agent behaviours. This process is similar to the
approach taken by work of Anders Holden Deleuran (2015) at
CITA and others (Fornes 2014). In Ivy, this well-worn approach is
described as a specific case of general segmentation: a strip-like
segmentation may be achieved by constructing a tree (via any

7	 A typical unfold segmentation of a test mesh.

Ivy Nejur, Steinfeld

451ACADIA 2017 | DISCIPLINES + DISRUPTION

means described above, including agent segmentation or the
Kruskal-Valence algorithm) with no branching permitted.

Anticipating Fabrication: Flaps
The MeshGraph data type is designed to maintain an active
connection between the start and end states of the working
geometry. Because of this, even in the linear environment of a
parametric model such as Grasshopper, it is possible to define
auxiliary geometries related to the original mesh, and to carry
these geometries through to the flat fabrication data created by
the unfold.

The first and most elemental application of this feature may be
observed in the SimpleFlap tool. This tool creates glue flaps or
tabs for each edge of the segmented mesh. Since this tool is
designed for ease of use, and does not offer many variations
from the standard tapered shape of the glue flap, a second
component has been developed that generalizes the definition of
a flap to to include any planar geometry. The Custom Flap tool
allows for the use of any set of planar curves as flaps, a feature

that accommodates for any number of fabrication strategies,
including riveted connections, snap connections, and entangled
connections. Because each cut edge receives separate left- and
right-hand flaps, the assembly strategy can be tuned according
to specific geometric traits, such as the angle of incidence
between connected faces. In this way, the Ivy unfolding routine
can produce connection mechanisms that are responsive to
fabrication material and local geometry.

Unrolling Additional Geometry
Just as we are able to define auxiliary geometry related to each
unfolded edge of a mesh, so too can we define such geom-
etry related to each mesh face. Like the definition of flaps, this
functionality holds ramifications for problems in fabrication and
assembly.

The MeshNode data object is capable of storing arbitrary
planar curve geometry that may be related to a mesh face, and,
when unrolled, may be subsequently transformed together
with the underlying mesh until it finds a final flat state. This

9	 Showcase of the CustomFlap component showing how any custom flat geometry can be used as piece connector in the Ivy fabrication workflow.

8	 A stripification workflow showing the work on the orange peel algorithm. The stripes are calculated from the naked edges of the mesh caternary.

452

functionality holds relevance in GAD for two reasons. First, it
enables enhancements related to fabrication, especially if used in
conjunction with the custom flap component. Unrolled additional
geometry may be used in conjunction with flap geometry while
also extending beyond the contour of the related face—a useful
feature when designing for assembly. Second, since the addition
of a layer of geometric information to unfolded mesh models
does not increase the number of faces transformed, certain
geometric routines may be handled without the additional
calculation.

GEOMETRY GENERATION BASED ON TREES
As demonstrated in the section above, acyclic connected graphs
(trees) related to polygon meshes hold utility beyond mesh
segmentation, and may be effectively applied in the service
of certain classes of geometric transformation relevant to
GAD, including unfolding. This data structure holds still further
ramifications for GAD. In this section we discuss the use of
the MeshGraph type in two applications concerning geometry
creation: mesh weaving and mesh creasing.

General Mesh Weaving
The generation of geometry through a weaving process on
arbitrary two-manifold polygon meshes is a well-researched
topic in CG. Recent advances have been made in this area (Xing
et al. 2010; Akleman et al. 2009), some of which have begun to
address concerns of fabrication at architectural scales (Xing et al.
2011). The approach taken by many such researchers relies on
mesh face or mesh edge subdivision and projection on individual
planes. The produced subdivisions in a second step can be

joined into strands of weaved geometry. Our approach to mesh
weaving, although also based also on graph theory, is funda-
mentally different. The weaving enabled by Ivy is not the result
of subdivision and projection; rather it is more closely related to
analog weaving processes.

In the first step, two separate segmentations are created on a
given mesh, each of which is grown based on a different weight
landscape. Ideally, these weight landscapes should be near to the
inverse of one another. Alternatively, the second segmentation
could be created by using the cut/uncut state of the graph edges
from the first. Next, the segmentation geometry is modified in
order to allow the individual geometries to negotiate one another
without collision. Here, each graph node becomes an offset of
the original mesh face, and each graph edge produces a mesh
quadrilateral that connects the offset to the original mesh edge.
This step is similar to an established technique (Hernandez et
al. 2013), but is employed here for a different purpose. Finally,
we walk the individual segmentations of the graph, offsetting
individual faces either up or down along the normal based on
the cuts found in the two trees. Essential in this process are the
individual segmentations of the base graph, and in turn, the two
weight landscapes that drive them. The weaving is designed to
work with singular spanning trees over the whole graph, or with
segmentations that result in multiple smaller trees (or stripes).
When the weaving process is complete, MeshGraphs are created
using the entangled meshes that result—MeshGraphs that can
later be unfolded using the processes described in a section
above. Since fabrication of such a weave requires entangling
the two unfolded strips, to facilitate assembly two pieces of

10	 The Ivy Unfold Tool has the ability to transform additional geometry with the mesh.

Ivy Nejur, Steinfeld

453ACADIA 2017 | DISCIPLINES + DISRUPTION

information are carried forward from the original MeshGraph:
a reference from woven node to the original node, and a flag
indicating the relative position (up or down).

Mesh Crease and Structural Support Generation
Ivy offers two other routines for geometry generation based
on trees. As in our approach to general mesh weaving, these
routines rely on mesh segmentation through spanning tree
graphs, but are applied in the service of outcomes that address
concerns unique to GAD. While these tools are less developed
than others described above, they begin to suggest the sort of
applications that are possible when specific problems in architec-
ture are addressed using the MeshGraph data type.

The Crease Mesh tool uses the tree graph(s) resulting from a
segmentation and produces subdivisions in the base mesh by
adding vertices in the middle of each face and in the middle of
each edge that finds a correspondence in the graph. These new
vertices are moved some distance along the face normals and
averaged edge normals. The final offset values applied to the
new vertices are calculated using the tree graph hierarchy, as
well as a linear variation of the numbers between the provided
root and leaf values. The result resembles a set of folded creases
(or ridges) in the original mesh, and suggests a flow or pattern of
erosion on a topographical surface. We speculate that this tool

might offer an ability to add selective structural reinforcement to
certain areas of an architectural form.

The Graph Structure tool uses the same principles, but instead
creates a network of lines that start on the mesh, though are
offset from it by some amount. The offset is calculated, as with
the crease component, in a linear fashion as a variation from
the specified root value to the given leaf value. The result is a
structure that we speculate could work as a load distribution
system based on the position of a node in the hierarchy of the
tree graph. Depending on the segmentation of a mesh, multiple
supporting structures could be generated using this tool.
Alternatively, by using the same segmentation, multiple versions
of a structure could be found simply by changing the root of the
tree graph.

CONCLUSION AND FUTURE WORK
This paper has detailed a number of recently developed features
of Ivy, a software framework for working with acyclic connected
graphs (trees) related to polygon meshes—a structure encap-
sulated by the MeshGraph data type. While this framework
was first conceived to address problems in mesh segmentation,
we have demonstrated here that the approach of describing
and manipulating polygon meshes through weight landscapes
expressed on their dual graph holds utility beyond segmentation,

11	 A number of weaving variations of the same base mesh using different weight landscapes and different strand settings.

454

and extends into a number of applications relevant to generative
architectural design.

We envision future work to extend in two directions. Foremost,
as the Ivy tool has remained in beta development for the
duration of this research, we recognise the need to validate the
expected utility of many of these methods, and to calibrate the
routines to the needs thereof. Additionally, we see potential in
extending the functionality of the features mentioned above
in one area in particular: the generation of geometry based on
trees.

Validation of the research presented here against the require-
ments of architectural practice promises to provide a host of
opportunities for further development. Most immediately visible
challenges include refining the workflow for defining custom
flaps and connections, and in producing custom scoring lattice
hinges. Further, since at present the folding routines in Ivy hold
utility for working with relatively thin inelastic materials, we see
a number of opportunities for working in contexts that challenge
these limitations, and that require closer connections with 1:1
prototyping. Thin sheet materials, while rigid, fold easily by hand
or with minimal mechanical assistance. Thicker sheet material
would require a modification of the cutting patterns in the
unfolding algorithms currently available in Ivy, for example the
use of lattice hinges.

Further, such modifications could enable a connection between
the desired three-dimensional form and the creation of the
cut pattern. Because this future work is closely tied to material

research, these particular avenues of development will require
physical prototyping. As a result, we see potential in workshops
or pavilion installations that will serve to test these ideas.

Another direction that we expect to be fruitful is the elaboration
of tree-based geometry generation to better address a range
of applications. These include an expansion of the weaving
algorithm to include partial weaving strategies, support for
non-manifold or pseudo non-manifold meshes, and, in particular,
a potential double use of the assembly flaps that could provide
structural stiffness. As described above, the Custom Flaps
component of Ivy allows for arbitrary two-dimensional curves, a
feature that enables a range of flap strategies (such as glue flaps,
dry entangled flaps, riveted flaps, and snap joints). This feature
could be extended to allow flaps to serve a structural purpose,
thereby enhancing surface stability and overall structural
stiffness.

REFERENCES
Akleman, Ergun, Jianer Chen, Qing Xing, and Jonathan L. Gross. 2009.

"Cyclic Plain-Weaving on Polygonal Mesh Surfaces with Graph Rotation

Systems." ACM Transactions on Graphics 28 (3): 1.

Attene, Marco, Bianca Falcidieno, and Michela Spagnuolo. 2006.

"Hierarchical Mesh Segmentation Based on Fitting Primitives." The Visual

Computer 22 (3): 181–93.

Deleuran, Anders Holden. 2015. "MeshWalker Algorithm." Video, 3;50.

https://vimeo.com/118487290.

12	 Mesh creasing example based on a tree MeshGraph.

Ivy Nejur, Steinfeld

455ACADIA 2017 | DISCIPLINES + DISRUPTION

Fornes, Marc. 2014. “Double Agent White.” In ACADIA 14: Design Agency,

Projects of the 34th Annual Conference of the Association for Computer

Aided Design in Architecture, edited by David Gerber, Alvin Huang, and

Jose Sanchez, 157–60. Los Angeles: ACADIA.

Hernandez, Edwin, Alexander Peraza, Shiyu Hu, Han Wei Kung, Darren

Hartl, and Ergun Akleman. 2013. "Towards Building Smart Self-folding

Structures." Computers & Graphics 37 (6): 730–42.

Katz, Sagi, George Leifman, and Ayellet Tal. 2005. "Mesh Segmentation

Using Feature Point and Core Extraction." The Visual Computer 21 (8–10):

649–58.

Leitão, António, Luís Santos, and José Lopes. 2012. "Programming

Languages For Generative Design: A Comparative Study." International

Journal of Architectural Computing 10 (1): 139–62.

Nejur, Andrei, and Kyle Steinfeld. “Ivy: Bringing a Weighted-Mesh

Representation to Bear on Generative Architectural Design Applications.”

In ACADIA // 2016: Posthuman Frontiers: Data, Designers, and Cognitive

Machines, Proceedings of the 36th Annual Conference of the Association

for Computer Aided Design in Architecture, edited by Kathy Velikov, Sean

Ahlquist, Matias del Campo, and Geoffrey Thün, 140–151. Ann Arbor:

ACADIA.

Pottmann, Helmut, Michael Eigensatz, Amir Vaxman, and Johannes

Wallner. 2015. "Architectural Geometry." Computers & Graphics 47:

145–64.

Shamir, Ariel. 2008. "A Survey on Mesh Segmentation Techniques."

Computer Graphics Forum 27 (6): 1539–556.

Skiena, Steven S. 1998. The Algorithm Design Manual. Santa Clara, CA:

TELOS.

Taubin, Gabriel, and Jarek Rossignac. 1998. "Geometric Compression

through Topological Surgery." ACM Transactions on Graphics 17 (2):

84–115.

Xing, Qing, Gabriel Esquivel, Ergun Akleman, Jianer Chen, and Jonathan

Gross. 2011. "Band Decomposition of 2-Manifold Meshes for Physical

Construction of Large Structures." In ACM SIGGRAPH 2011 Posters, 58.

Vancouver, BC: SIGGRAPH.

Xing, Qing, Ergun Akleman, Jianer Chen, and Jonathan L. Gross. 2010.

"Single-Cycle Plain-Woven Objects." In Proceedings of the Shape Modeling

International Conference, 90–99. Washington, DC: SMI.

IMAGE CREDITS
All drawings and images by the authors.

Andrei Nejur is an Assistant Lecturer in the Architecture Department at

the Technical University of Cluj-Napoca.

Kyle Steinfeld is an Assistant Professor specializing in digital design tech-

nologies in the Department of Architecture at the University of California,

Berkeley.

13	 Mesh structure example based on a
tree MeshGraph.

13

