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How can machine learning be combined with intelligent construction, material
testing and other related topics to develop a new method of fabrication? This
paper presents a set of experiments on the dynamic control of the heat deflection
of thermoplastics in searching for a new 3D printing method with the dynamic
behaviour of PLA and with a comprehensive workflow utilizing mechanic
automation, computer vision, and artificial intelligence. Additionally, this paper
will discuss in-depth the performance of different types of neural networks used in
the research and conclude with solid data on the potential connection between the
structure of neural networks and the dynamic, complex material performance we
are attempting to capture.
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1. BACKGROUND
After years of extensive development, artificial intel-
ligence has proven its potential to achieve human-
level performance in many areas such as image
recognition, speech recognition, and decision-
making. This technology can be used in a far broader
direction than the abovementioned fields. Currently,
various fields are exploring how to use artificial intel-
ligence technology to solve professional problems.
In the field of intelligent construction, architects con-
tinually explore material understanding and con-
struction methods.

In the field of digital construction, the applica-
tion of digital methods to traditional building work-
flows has always been one of the important research
topics in the construction industry. Thedevelopment
of automation technology, especially the emergence
of various machine manufacturing, has brought new
possibilities for the construction industry. In mate-
rial development and use, progress in digital fabrica-

tion has benefitted from incorporating dynamic ma-
terial properties as generative and integratingdesign
factors (Menges, 2012a). Architects and construction
builders can gradually transfer materials to the digi-
talmanufacturingfield. Numerous studies havebeen
conducted to digitize craftsman’s traditional work,
ranging from utilizing digital fabrication tools to sim-
ulating the handiwork of handcrafted items (Brug-
naro andHanna, 2018) to augmenting actuatorswith
sensors, to incorporate the real-time feedback on a
material’s state during thedesignproductionprocess
(Mueller et al., 2012).

Contrary to the human understanding of ma-
terial performance based on explicit material prop-
erties and behavioural models, neural networks are
able to fit any function allotted enough training ma-
terials without humanunderstanding of the logic be-
hind it. Therefore, is it possible for us to unite ar-
tificial intelligence (AI) and mechanical automation
processes to generate an end-to-end material per-
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formancemodel that bridges fabrication control and
outcome of the form while utilizing complex and dy-
namicmaterial behaviourswithout a scientific under-
standing of thematerial properties? Wewill offer the
best possible exploration of this issue.

Recently, research has been conducted to use AI
to develop a novel fabrication method. For exam-
ple, neural networks (NNs) have been explored to de-
velop design tools for doubly curved metal surfaces
(Rossi and Nicholas, 2018), and in other cases, var-
ious robot woodcarving techniques have been as-
sessed in response to material properties (Brugnaro
and Hanna, 2018).

This research will potentially give architects and
designers a universal method to access a diversity of
material properties and enable designers to program
material behaviour and achieve design intentions
without systematic understandings of the mecha-
nism behind material performance.

2. PREVIOUS RESEARCH
This research is a continuation of a previous method
that utilized robotic automation and AI to observe
the complexity of flexible elastomer materials in re-
gard to their bending and deformation features(Luo,
2018). The experiment described in this paper is de-
veloped to seek more insight to the questions raised
from previous studies: 1. Is this a universal method
that manages material properties and has no estab-
lished material model? 2. Instead of mapping ma-
terial distribution/properties to material behaviour,
can this processgenerate amore abstract end-to-end
model that directly maps mechanical control of the
fabrication tools to the behaviour ofmaterial and the
final form? 3. How will this method impact common
fabrication technologies?

3. OVERALL SYSTEM
In this research, we are applying the method of
automatic generation of the material performance
model with AI to one of the most common fabrica-
tion technologies-3D printing with PLA.

Wehave developed a system for a printer to print

a line across two supports at either end and to let the
material naturally drip into a curve. As a thermoplas-
tic material printed in such an unsupported manner
with alternating extrusions, movement speed deter-
mined by Gcode, and under the compound play of
gravity and intermolecular forces, the PLA string will
solidify into a curve with uneven curvature.

This system is different from the traditional ad-
ditive layering printing system. Conventional print-
ing systems require layer-by-layer printing from bot-
tom to top, and additional brackets are required for
some of the suspended areas. The system is capable
of efficiently printing a 2.5D or 3D spatial wireframe
without additional support. Owing to the complexity
of intermolecular forces, unknown material proper-
ties, etc., planning and control of the printing path is
impossible to achieve with current 3D printing soft-
ware, as this 3D printing method relies on the dy-
namic heat deflation of PLA that has no established
method for simulation or prediction. Confronting
such a challenge, a machine learning approach is de-
veloped to build an end-to-end workflow. After col-
lecting a large number of training samples with an
automatic system and image processing, we created
two models to learn the rules for this new printing
method: One forward model calculates the printed
curve via a given Gcode, and one backward model
predicts theGcode controlling the printer by produc-
ing the curve that the designer intended to print (Fig-
ure 1).

Figure 1
Two-way mapping
between Gcode
and the printed
form

The main workflow of the method includes
the following steps.
1.Development of an automatic mechanical sys-
tem. The next step is processing the collected im-
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Figure 2
Image to data

age, extracting the data describing the material per-
formance with image recognition, matching the fab-
ricated form with the Gcode that controls the move-
ment of the extruder and formatting it for machine
learning.

In the experimental design, we printed white
PLA materials against a dark background for maxi-
mum contrast. In this way, we can easily extract the
experimental objects and transform the pixel points

into sequenced data according to the requirements
of subsequent experiments with image processing
by Python and Opencv. At the same time, the curve
data generated from the image is matched with the
corresponding printed Gcode, forming a complete
training sample (Figure 2).

2.Training the forward and backward models.
We use the deep neural network model in ma-
chine learning to build a model for predicting curves
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from Gcode and a model for predicting Gcode from
curves, using appropriate data augmentation tech-
niques. By selecting different types of models, dif-
ferent model structures and different hyperparame-
ters for comparison, the best-performing models are
finally trained for the subsequent experimental ses-
sions. Information about neural networks and spe-
cific models will be detailed in the next section.

3.Model and method evaluation. The trained
model was used to predict the Gcode from a given
curve, which was printed and compared to the de-
viation between the predicted curve and the actual
print to evaluate the ultimate effect of the method.

4. MODEL TRAINING
1. Deep learning
Traditional machine learning and signal processing
techniques explore shallow learning structures that
contain only a single layer of nonlinear transforma-
tion. A commonality of shallow models is that they
contain only a single simple structure that converts
the original input signal into a particular problem
regarding a spatial feature. The concept of deep
learning stems from the study of artificial neural net-
works, which combines low-level features to form
more abstract high-level representations (attribute
categories or features) to discover distributed feature
representations of data. In 2006, Hinton proposed
a deep neural network for complex general learning
tasks in science, pointing out that networks with a
largenumber of hidden layers have excellent feature-
learning capabilities(Hinton, 2006;Yoshua 2009;Arel,
2010). Humans have found a way to deal with “ab-
stract concepts” with the help of neural networks.
The research of neural networks has entered a new
era, and deep learning has begun to enter a period
of rapid development.

In this paper, three models-neural networks
(NNs), convolutional neural networks (CNNs) and
long short-term memory (LSTM)-were tried in the
experiment. By comparing and analysing the per-
formance of the three models, the best performing
model was selected and utilized in subsequent ex-

periments. In choosinga loss function,weusedmean
square error (MSE) and mean absolute error (MAE)
evaluationmethods. The lower the values ofMSEand
MAE, the smaller the model error and the better the
performance.

NN is the simplest deep learning model, and for
some simpler problems, it is the most efficient solu-
tion.

Figure 3
Structure of Neural
Network (NN)

Convolutional neural networks are an impor-
tant milestone in the development of deep learning.
CNNs can significantly reduce the number of free pa-
rameters in thenetwork. A small portionof the image
referred to as the localized region in the CNN serves
as the bottommost input to the hierarchical struc-
ture. Information is passed through different net-
work layers, so each layer can acquire significant fea-
tures of the observed data that are invariant to trans-
lation, scaling, and rotation (Erhan , 2010)(Figure 4).

ARNNhasa cyclic network structure and theabil-
ity to maintain information. Its network structure is
shown in Figure 5 The cyclic network module in the
RNN transfers information from theupper layer of the
network to the next layer. The output of the hid-
den layer of the network module depends on the in-
formation of the previous moment. The LSTM net-
work is an extension of the RNN and is specifically
designed to avoid long-termdependency issues. The
LSTM’s repetitive neural networkmodule has a differ-
ent structure, and unlike the plain RNN, there are four
neural network layers that interact in a special way(S.
Hochreiter, 1997).
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Figure 4
Structure of
Convolutional
Neural Networks
(CNN)

Figure 5
Structure of Long
Short-Term
Memory (LSTM)

2. Data augmentation
In machine learning, sometimes there are not
enough training samples, or the sample distribu-
tion is not balanced, whichmay lead to poor training
results and overfitting. To solve these problems, it
is necessary to generate some new samples with
data augmentation, on the premise of ensuring ac-
curacy on the basis of existing samples, and expand
the training per se. In the process of collecting sam-
ples, we used certain consistent characteristics of
the printer and image processing to conduct data
augmentation.

3. Forwardmodel
For the three models-NN, CNN, and LSTM-the com-
parisons of different amounts of input data and dif-
ferent model structures are shown below.

For the threemodels, the overall performance of
the LSTM model is significantly better than the NN
and CNN models. For sample input data of different
sizes, the greater the number of samples as a whole,

the better the model performance; this reflects that
the deep learning model has a strong dependence
on the size of the training samples.

However, in the case of 1100 and 1600 training
samples, the performance of the model has its ad-
vantages anddisadvantages. In response to this phe-
nomenon, we have conducted further research. We
train all the samples in the training set, but for the test
set, we divide it into subsets according to the differ-
ent amplitudes of the curves and separately evaluate
the prediction.

Figure 6
Performance of
forward models

It can be concluded from the above figure that the
performance of models for different amplitude inter-
vals is significantly different. For the three models,
the amplitude is predictedmost accurately in the 10-
20 mm range, and the more deviation there is from
this amplitude range, the worse the model becomes
at prediction. In the amplitude range of 10-20 mm,
the average prediction error of each coordinate is
only approximately 2-3 mm, which indicates that the
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Figure 7
Forward model
performance over
different amplitude
ranges

Figure 8
Forward Model
Accuracy: Gcode to
Curve

Figure 9
Performance of
backward models

Figure 10
Backward model
performance over
difference
amplitude ranges

method is very feasible. Selected testing samples are
shown in Figure 8. One possible explanation is that in
the process of collecting samples in the early stage,
the distribution of the samples has a certain devia-
tion. At a higher sample distribution with an ampli-
tude closer to 10-20 mm, the prediction effect of the
interval is obviously better than other intervals. A so-
lution to this issue can be further improved upon in
subsequent studies.

4. Backwardmodel
In the previous experiment, we trained the model
to predict the shape of the curve with a given
Gcode. However, in practice, what ismore commonly
needed and has more practical value is a model
that predicts a possible Gcode from a given targeted
curve.

Similarly, for this backwardmodel, we continued
with the three models of NN, CNN, and LSTM, as well
as different input sample data volumes and different
model structures. The results are given below (Figure
9).

For the predicted Gcode model, the differences
between thedifferentmodels are not as large or even
significantly different from those of the predicted
curve model. However, as the number of input sam-
ples increases, the backward prediction accuracy of
the CNN and LSTM decreases significantly more than
the NN. This aspect shows that we are do not have
enough samples to sufficiently train the backward
model. On the other hand, it also shows that the NN
is more adaptable to reverse prediction.

Similarly, we use a full sample to evaluate the
performance of the inverse prediction model over
different intervals (Figure 10). In the 20-30mmrange,
the NN can still maintain a good level of accuracy
compared to the CNN and LSTM. Therefore, the NN
is more suitable overall for the reverse prediction
model. Selected testing samples are shown in Figure
11.
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Figure 11
Backward Model
Accuracy: Curve to
Gcode

Figure 12
Validation and
application in
design

5. METHOD ANDMODEL EVALUATION
Returning to the purpose of this research, we hope to
propose a new manufacturing process based on dy-
namic material properties. In terms of the perceived
material properties, our model has already achieved
a positive result. For a given set of Gcode, printed
shapes can be predicted with a certain degree of
accuracy. Considering the actual production value,
however, we still have to focus on whether we can
predict a possible Gcode set for the curves intended
for printing.

Therefore, we will conduct a set of experiments
to validate the trained model. A simple landscape
scheme is put together and divided into a set of cut-
out curves. The trained model is used to predict the
Gcode for printing. We print out the Gcode and com-
pare the actual print results to the expected curves to
evaluate the effects of the method and model.

The actual print results are basically consistent
with the expected curves (Figure 12), which proves
the feasibility of the method.

6. CONCLUSION
The conclusions of the paper can be summarized as
follows: First, the method and outcome in this paper
establishes a novel method for 3D printing of spatial
wireframes and its development process with an au-
tomatedmachine learningprocess. Second, it has ex-
panded and generalized the potential application of
the proposed workflow beyond the limitation of cur-
rent scientific material models. Third, such a method
is capable of creating a direct end-to-end connection
between the control of the fabrication process to the
final form resulting from a complex form fining pro-
cess, avoiding complicated interim steps and calcu-
lation. Last but not least, compared to the traditional
method of developing material models that require
different fields of knowledge andworkflow for differ-
ent material properties, the method and logic of the
work described in this paper is universal and proven
to be capable of generalization when applied to pro-
ducing a diversity of material performance models
that encompass multiple systems of non-relatedma-
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terial behaviour, such as the active process of bend-
ingelastomer and the reformprocess ofmelting ther-
moplastics.

For architects, architectural design ultimately re-
lies on the selection and construction of materials.
In the long run, new building materials and new
construction methods will bring about tremendous
changes in the construction industry, as well as new
architectural styles. We believe that the approach
presented in this article will be a positive inspiration
to herald this change.
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