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Abstract

The reason for choosing swarms as a study case is the fascination of the simplicity of its 
mechanics and its complexity as a phenomenon. It can be compared in that sense with other 
models such as Cellular Automata, for example, with which shares some similarities (they are 
parallel systems, they interact at a local level, etc). 

This paper describes the swarms understanding them as examples of sensori-motor intelligence. It 
begins addressing some issues already patent when studying simple turtles, and then it looks at 
two ways of interaction of the swarm and their implications. It studies the interaction with an 
environment in relation with learning processes and simple perceptions of forms, and then uses the 
processes developed in this first cases to look at the possibilities of interaction of the swarm with a 
human, and its similarities with other systems such as Genetic Algorithms or social systems.

In general the paper discusses the morphogenetic properties of swarm behaviour, and presents an 
example of mapping trajectories in the space of forms onto 3d flocking boids. This allows the 
construction of a kind of analogue to the string writing genetic algorithms and Genetic 
programming that are more familiar, and which have been reported by CECA [22,23,24,25,26]

Earlier work with autonomous agents at CECA [27, 28] were concerned with the behaviour of 
agents embedded in an environment, and interactions between perceptive agents and their 
surrounding form. As elaborated below, the work covered in this paper is a refinement and 
abstraction of those experiments.



This places the swarm back where perhaps it should have belonged, into the realms of abstract 

computation, where the emergent behaviours (the familiar flocking effect, and other observable 

morphologies) are used to control any number of alternative lower level morphological 

parameters, and to search the space of all possible variants in a directed and parallel way.

1. Simple agents and turtles. Sensori-motor intelligence and perception

W. Grey Walter built in Bristol the first recorded turtles, Elmer and Elsie, just after the second 
world war. These first turtles raised many questions and opened new paths in the field of early 
Artificial Live. Walter gave them the mock-biological name Machina speculatrix, because they 
illustrated particularly the exploratory, speculative behaviour that he found characteristic of most 
animals. As he wrote, ‘Crude though they are, they give an eerie impression of purposefulness, 
independence and spontaneity.‘ ‘In this way it neatly solves the dilemma of Buridan’s ass, which 
the scholastic philosophers said would die of starvation between two barrels of hay if it did not 

posses a transcendental free will.’ [1]

Inspired by Grey.W. Walter's turtles, Valentino Braitenberg [2] uses thought experiments in which 
very intricate behaviours emerge from the interaction of simple component parts, to explore 
psychological ideas and the nature of intelligence. In a sense, Braitenberg "constructs" intelligent 
behaviour, a process he calls "synthetic psychology". A similar approach has been taken in the 
development of this work, starting from very simple agents or turtles interacting in the real world, 
and then developing the idea further with the use of swarm systems in the computer. Invention and 
deduction, as in Braitenberg’s case, have been preferred over analysis and observation. 

To begin with, a simple turtle was built, based in the reflex behaviour by which moths and other 
insects are attracted to light, known as "positive phototropism". In this mechanism the two halves 
of the motoric capacity of an insect are alternatively exited and inhibited, depending on the side 
from which they perceive a strong source of light, having the effect of steering the insect towards 
the light source.



automaton moving on an environment

The automaton consisted of two light sensors connected each to threshold devices and these to two 
electric motors (one in each side of the body). The device is thus made of two completely 
independent effectors (sensory-motor units). The automaton exhibits different behaviours 
depending on the configuration of its parts. Changing in particular the position of the light sensors 
respect to the rest of the components, the machine wondered in different ways through a 
rectangular white area: sometimes groping the edges, another times covering the whole surface, 
other times stopping at the corners. Although all operations involved in the 'computation' of this 
automaton were elementary, the organisation of these operations allowed us to appreciate a 
principle of considerable complexity such as the computation of abstracts. Notions such as the 
ones of "edge", "corner" or "surface" emerged when different configurations of the body of the 
automaton were set in the same test environment. 

Though Von Foerster [3] already defined this emergence of perception through sensor-motor 
interaction in the framework of second order cybernetics, the biggest development of this idea of 
perception-in-doing comes perhaps from the description of perception in autopoietic theory. For 
Maturana and Varela, cognition is contingent on embodiment, because this ability to discriminate 
is a consequence of the organism's specific structure. They call this concept Enaction, where 
'...knowledge is the result of embodied action’ and 'cognition depends upon the kinds of experience 
that come from having a body with various sensorimotor capacities ... themselves embedded in a 
more encompassing biological, psychological, and cultural context ' [4].

1.1 Structural coupling
The most interesting idea in Autopoietic theory referring to perception is the already mentioned 
Structural coupling, which leads to the concept of enactive perception. It is '...a historical process 
leading to the spatio-temporal coincidence between the changes of state in the participants ’ [5].
Structural coupling describes ongoing mutual co-adaptation without allusion to a transfer of some 
ephemeral force or information across the boundaries of the engaged systems. There are two types 
of structural coupling: 



1) A System coupling with its Environment.
2) A System Coupling with Another System.' If the two plastic systems are organisms, the result of 
the ontogenic structural coupling is a consensual domain.'

Inside this framework it is interesting to observe is how different 'forms' are described by the 
structural coupling of the automaton and an environment. There is not any explicit description of 
those formal concepts in the system, instead they are actually distributed through it, in the 
'environment' and in the way the light sensors are fixed in relation to the motors. We could say that 
the device describes different 'gestalts' (a gestalt being some property -such as roundness- 
common to a set of sense data and appreciated by organisms or artefacts) or universal forms. In 
the next experiments swarms are implemented to define and find such concepts of shape. These 
experiments resemble Selfridge and Neisser’s Pandemonium machine for pattern recognition, in 
which ‘Each local verdict as to what was seen would be voiced by "demons"(thus, pandemonium), 
and with enough pieces of local evidence the pattern could be recognised' [6].

2. Swarms
The relative failure of the Artificial Intelligence program and its approach to cognition has forced 
many computer scientists to reconsider their fundamental paradigm. This paradigm shift has led to 
the idea that sensori-motor intelligence is as important as reasoning and other higher-level 
components of cognition. Swarm-based intelligence relies on the anti-classical-AI idea that a 
group of agents may be able to perform tasks without explicit representations of the environment 
and of the other agents and that planning may be replaced by reactivity. (R.Kube and E.Bonabeau) 
[7]. The self-organisation of patterns of flow in social insect swarms is an example of how 
intelligent and efficient behaviour of the whole can be achieved even in the absence of any 
particular intelligence. Indeed, such patterns can have functionality even without the awareness of 
the individual entities themselves. A study of the essential elements of swarm dynamics provides 
an understanding of such behaviours, where the most important of them is possibly the capacity 
for self-organisation.

The collective behavioural characteristics of a group of organisms must, of course, be encoded in 
the behaviour of the individual organisms. Complex adaptive behaviour is the result of 
interactions between organisms as distinct from behaviour that is a direct result of the actions of 
individual organisms.

2.1 First case of structural coupling: Systems coupling with an environment
As explained in the introduction the first experiments with swarms are an extension of the work 
done with the automaton, in the descriptions of form through sensori-motor devices. There are 
some different numbers of paradigms of collective intelligence. Perhaps the most simple in 
principle and many times spectacular is the modelling of flocks, herds and schools, that give rise 
to quite appealing spatial configurations. Based on Craig Reynolds computer model of co-
ordinated animal motion, Boids (1986)[8], a swarm of sensing agents was created, each of them 
reacting to a geometrical environment through a collision detection algorithm, and combining 
their actions through flocking. In the flocking or schooling of fish ‘individual members of the 
school can profit from the discoveries and previous experience of all other members of the school 
during the search for food. This advantage can become decisive, outweighing the disadvantages of 
competition for food items, whenever the resource is unpredictably distributed in patches’ [9]



The flocking rules were taken straight from Reynolds, and implemented in C and C++, inside 
AutoCAD 14 first, and using OpenGL later.

2.1.1 The flock algorithm.

Each agent has direct access to the whole scene's geometric description, but reacts only to flock 
mates within a certain small radius of itself. The basic flocking model consists of three simple 
steering behaviours: 

Diagram of the swarm. Arrows represent each agent’s heading, dotted lines their closest neighbours.

Separation: 
Gives an agent the ability to maintain a certain separation distance from others nearby. This 
prevents agents from crowding to closely together, allowing them to scan a wider area. To 
compute steering for separation, first a search is made to find other individuals within the 
specified neighbourhood. For each nearby agent, a repulsive force is computed by subtracting the 
positions of our agent and the nearby ones and normalising the resultant vector. These repulsive 
forces for each nearby character are summed together to produce the overall steering force. 

Cohesion: 
Gives an agent the ability to cohere (approach and form a group) with other nearby agents. 
Steering for cohesion can be computed by finding all agents in the local neighbourhood and 
computing the "average position" of the nearby agents. The steering force is then applied in the 
direction of that "average position". 

Alignment:
Gives an agent the ability to align itself with other nearby characters. Steering for alignment can 

be computed by finding all agents in the local neighbourhood and averaging together the 'heading' 
vectors of the nearby agents. This steering will tend to turn our agent so it is aligned with its 
neighbours.



Obstacle avoidance:
In addition, the behavioural model includes predictive obstacle avoidance. Obstacle avoidance 
allows the agents to fly through simulated environments while dodging static objects. The 
behaviour implemented can deal with arbitrary shapes and allows the agents to navigate close to 
the obstacle's surface. The agents test the space ahead of them with probe points. When a probe 
point touches an obstacle, it is projected to the nearest point on the surface of the obstacle and the 
normal to the surface at that point is determined. Steering is determined by taking the component 
of this surface normal, which is perpendicular to the agent's heading direction. Communication 
between agent and obstacle is handled by a generic surface protocol: the agent asks the obstacle if 
a given probe point is inside the surface and if so asks for the nearest point on the surface and the 
normal at that point. As a result, the steering behaviour needs no knowledge of the surface's shape. 
Results:
In this first experiment, as a result of the way the collision detection algorithm worked (slowly 
rectifying the heading of the agent until it found a collision free trajectory), the individual agents 
had a tendency to align with the surfaces of the geometric model of the site. This ended in the 
emergence of the 'smoothest' trajectory on the environment, which in the case of the test model of 
a site where the meanders of a river. The swarm is able to discriminate the edges of a long wide 
curvy grove, that is, the geometric form of the river, from any other information such as buildings 
or building groups or infrastructures. 

Traces left by the agents.

2.1.2 Ants, networks and learning swarms.
The second experiment with swarms tried to incorporate the capacity for learning that we find in 
many social insects. This is many times achieved through their relation with the environment, 
through stigmergy and sematectonic communication. 



Grassé introduced stigmergy (from the Greek stigma: sting, and ergon: work) to explain task co-
ordination and regulation in the context of nest reconstruction in termites of the genus 
Macrotermes[10]. Grassé showed that the co-ordination and regulation of building activities do 
not depend on the workers themselves but are mainly achieved by the nest structure: a stimulating 
configuration triggers the response of a termite worker, transforming the configuration into 
another configuration that may trigger in turn another (possibly different) action performed by the 
same termite or any other worker in the colony [11]. Individual behaviour modifies the 
environment, which in turn modifies the behaviour of other individuals. The process is called 
sematectonic communication [12], when the only relevant interactions between individuals occur 
through modifications of the environment.

Systems such as these show self-organisation of higher complexity than the initial flock model. 
Furthermore, it is possible to make a connectionist interpretation of the mechanics of such a 
system, and realise that it shows the same basic properties of a network [13]. Through this 
reading, and comparing it with a network it is easy to appreciate the capacity of a sematectonic 
system in terms of 'learning'. 

In Connectionist models structure consists of a discrete set of nodes (neurones), and a specified set 
of connections between the nodes (synapses). The network unfolds as a dynamic process in which 
different variables related to the transitions between nodes, or connection strengths, are modified. 
The dynamics of the whole system is the result of the interaction of all the neurones.

In its most general sense, learning can be described in connectionist models as how the connection 
strengths, and hence the dynamics, evolves. In general there is a separation of time scales between 
dynamics and learning, where the dynamical processes are much faster than the learning 
processes. In addition to neural networks there are many other types of connectionist models, such 
as autocatalytic chemical reactions, classifier systems, and immune networks, to mention just a 
few. Swarm networks are just another example.

Incorporating these ideas in to the swarm, sematectonic communication was implemented instead 
of flocking. For this, a three dimensional lattice space was provided. Agents move in this discrete 
space, each lattice being equivalent to a node in a connectionist system. Each agent leaves a trace 
in the morphogen variable (from Millonas) on each lattice (or node). The lattice space is also 
capable of computations on its neighbourhood, similar to Cellular Automata. The computations of 
the nodes are:

Diffusion: local averaging of the morphogen values, in order to generalise to neighbour nodes, and 
to generate smoother gradients for the agents.

Evaporation of the morphogen: slow reduction of the morphogen values, as explained earlier, to 
give the network the capacity of 'forgetting'. Necessary to discriminate the relevance of 
information, and therefore to learn.

Gradient calculation: This is performed by the nodes themselves instead of by the agents. It 
corresponds to the 'weights' in the transition probabilities from one node to another (in the case of 
this lattice space one of the neighbour nodes). Agents read the gradient and add it to their current 
heading. 



The way the gradients modify the possibility of an agent moving from one node to another is 
understood as the changes in the weights or the strengths of the connections between nodes, and 
therefore as the learning of the system. The lattice space and the accumulation of morphogen in it 
work as a memory and the slow "evaporation" of the morphogen as the capacity to 'forget', and 
therefore to discern significant patterns from irrelevant ones. After some time, areas with bigger 
concentrations of morphogen differentiated from others.

Gradients created by the sematectonic process.

A next step was to differentiate and learn between different "experiences" or sensed data by the 
agents. The agents would therefore “secrete” more morphogen when they 'sensed' geometry, and 
less when they had a clear view ahead of them. This ends up with the agents discerning different 
parts of the geometrical model, and clustering in areas where their collision detection algorithm 
informed them of higher spatial complexity (in the terms of the agents). In other words, spaces 
where the agent's collision detection algorithm found conflicts with the geometry (trying to steer 
away from one collision path and entering in to another, for example) at the same time spaces 
relatively easy to reach are rarely visited since otherwise the morphogen would evaporate if not 
visited by any agent.

2.1.2 Adaptative flock
In their paper 'The use of Flocks to drive a Geographic Analysis Machine', J. Macgill and S. 
Openshaw [14] discuss how the emergent behaviour of interaction between flock members might 
be used to form an effective search strategy for performing exploratory geographical analysis. The 
method takes advantage of the parallel search mechanism a flock implies, by which if a member 
of a flock finds an area of interest, the mechanics of the flock will draw other members to scan 
that area in more detail.



Result of the learning process in the site after 1000 , 5000 and 10000 iterations (8 hours).

The third swarm therefore was again of a flocking kind. One of the advantages of these is that 
since the lattice space and all its Cellular Automata operations such as diffusion are not needed 
anymore, it is possible to reduce enormously the amount of computation necessary.

The system shows the same characteristics for cognition explained earlier, that is, the capacity for 
remembering and forgetting, which we described when describing evaporation of the morphogen 
as essential in the process of learning. 

The Algorithm.
Each agent would have now a variable speed, with a common minimum and maximum for all 
agents. In case of collision trajectory, the agent will slow down. In the absence of collision, the 
agent will steadily speed up until it reaches its maximum. This means that in the event of a 
'conflict' space, or an area where one agent detects many collisions consecutively, agents will 
cluster; since their speed is low, they will have the inertia to remain there, where as faster 'free' 
agents in the neighbourhood will be easily attracted to the area. The information about collision 
areas is therefore stored in the speed of the agents. Speeding up will be the equivalent of forgetting 
in the system. 



Isosurface wrapping the paths of the agents.

With this mechanism, the swarm will move around detecting collision areas. If the area doesn't 
have enough weight compared with another, it won't be able to attract enough agents. The system 
will end up discriminating the areas were most collisions occur and which are more accessible, 
after a time.

2.2 System Coupling with Another System and consensual domains
Until now, swarms have being moving in geometrical representations of spaces. These swarms 
have been shown to have the ability to define different qualities of their environment, comparing 
patterns of collisions and unfolding a learning process. 
The space agents move in doesn't necessarily need to be any representation of physical space. It is 
possible to use the swarms of the different types to perform searches in n-dimensional phase 
spaces. The possibilities of this approach as an optimisation mechanism have been underlined by 
Eberhart and Kennedy [15], and their performance compared with similar search engines and 
devices such as Genetic Algorithms. One possible advantage of this approach is the easy 
understanding of the relation between the search mechanism and the solution space, and the way 
this search is performed. It also makes it possible to compare the process with other evolving 
systems, like the evolution of ideas, opinions and beliefs in social systems.

In the next step such a device has been built and tested for its ability to respond to human 
interaction. We have in this case the second type of structural coupling described previously as the 
coupling of two systems, which define a consensual domain. This can be described as the sphere 
defined by ‘ interlocked (intercalated and mutually triggering) sequences of states, established 
and determined through ontogenic interactions between structurally plastic state-determined 
systems.' [16]. We could also find this consensual domain when looking at the relations between 
agents in the previous swarms. The difference now is that this domain exists also between the 
swarm as a whole, and a human partner.



2.2.1. The Algorithm
The algorithm for this swarm is also a development of the basic Reynolds Boids algorithm, where 
each agent has been given a mass variable in order to incorporate the capacity of learning as well.
The acceleration the individual agents experience each iteration depends on this variable: light 
weights mean higher speeds, heavy weights slower ones. The cohesion of the flock is also 
influenced by the mass: heavy agents will attract others to their neighbourhood stronger than light 
ones. Light agents will also have less inertia, where heavy ones will tend to keep their variables 
unmodified. 
The system needs the slow “evaporation” of the mass variable in order to be adaptative and 
therefore to learn.
Some “sympathetic mass transition” has also been implemented, in order to make agents in the 
close neighbourhood of a very heavy one become also heavier and slower, and consequently 
clustering in that region (In the previous swarm this happened automatically from the interaction 
with the environment).

The weight that is assigned to each agent could have its origin in a “fitness function”. The position 
of each individual of the swarm would then be mapped onto a “phenotype” and a fitness value 
calculated for it. In cases of good fitness a heavy weight would be given to the individual, to 
indicate the system that that position is worth keeping and mimicking. Bad positions would this 
way be forgotten, since the agents in those areas would have low inertia and the tendency to move 
rapidly away from them, towards more successful territories. Regions with good values will 
compete with others for the attention of the agents, and if not successful enough, they will be 
forgotten. 

The implementation of a strategy based in the assignment of weight seemed appropriate in this 
particular case where there is interaction with a human. In a more general case it would be 
possible to evaluate each position for each iteration. In this case the difference of position are very 
small for each iteration and therefore the communication with the user and testing of the positions 
must be made at intervals of many iterations. The mechanism for copying some of the weight of 
heavier neighbours allows agents to react to the result of the “fitness” of those neighbours without 
direct testing of each particular position for each iteration. Of course this or a similar mechanism 
would also allow the testing of fitness at separate intervals, and therefore it would improve the 
economy of calculations of the algorithm.

In this instance of the flocking algorithm no specific fitness function has been assigned, using 
instead a so-called “eyeball test”, in which a human partner decides which position is more fitted. 
The process of interaction between both defines what has previously been described as a 
consensual domain. 

Additionally to Reynolds basic flocking algorithm, the agents choose sometimes one of their 
neighbours randomly. This rule has been found to be an effective way of avoiding the creation of 
completely uncommunicated and unrelated clusters of neighbours, allowing the swarm to adapt 
faster.

The collision avoidance with each other is also worth mentioning again in this context. It 
introduces slight discrepancies between the positions of the individual agents (they will have 
similar positions, but not the same one, or in other words, the phenotypes will be very similar but 
most of the cases not completely identical). This last element is in contrast with what Kennedy 
and Eberhart explain in their paper, about the possibility of for example two ‘opinions’ sharing the 
same space [17]. The introduction of these differences in position allows the agents to scan areas 



more thoroughly and extensively, particularly helpful when working with design spaces and 
“eyeball test” kinds of fitness. 

The way the space is mapped in to a phenotype is simple: in this case the three-dimensional space 
defined has been understood as the parameters for a branching algorithm. Each of the values of the 
position vector of the agents becomes a rotation angle around X, Y and Z in the branching of the 
phenotype. It is thus not necessary to have an infinite space, but it can be bounded between 0 and 
360 in each of the axes. The decision of using such an algorithm as a phenotype is not arbitrary. 
First it allows to create a big variety of different forms from very few parameters, which was 
reduced to three in this case to allow the demonstration of the operations of the swarm (the 
representation of spaces of higher dimensions has obvious difficulties). Secondly, it produces 
forms with many symmetries, in which patterns can be easily recognised and forms classified by 
the human partner. Therefore the choice of such a phenotype is not aesthetic, but functional. 

2.2.2. The program: Evolutionary Swarm.
Evolutionary Swarm is a Windows application developed to test the capacity of a swarm algorithm 
to define a consensual domain. It implements the algorithm previously described and provides it 
with an interface. This interface is made of two basic windows: one in which the swarm is shown 
in relation with the search space, and another one in which the position of each individual has 
been mapped in to a phenotype, through a branching algorithm. Each of these phenotypes can be 
selected by the user, increasing in this way the mass variable of the agent associated with that 
position. The agent will accordingly slow down and tend to remain in the vicinity of that space. 
Because of the dynamics of the swarm, the position of the phenotype selected will be ‘mimed’ by 
the rest of the individuals and reproduced with more or less accuracy through out the agent 
population. For generating more diversity among the swarm it is only necessary to evolve it 
without any particular member selected. This will increase the differences between the individual 
positions (less consensus) and therefore the variety of the phenotypes.

screensave of the interface of the evolutionary swarm.



2.2.3 Parallels with social systems
Parallels between biological evolutionary systems and the development of ideas have often been 
made, being perhaps the one implied in the concept of memetic evolution the most popular of such 
comparisons. The word “meme” was coined by Richard Dawkins in his book The Selfish Gene. 
Memes tend to make copies of themselves and are therefore “replicators”, like genes. ` Examples 
of memes include melodies, icons, fashion statements and phrases. Memes function the same way 
genes and viruses do, propagating through communication networks and face-to-face contact 
between people’ [18]. 

In this context the flock positions of its individuals could also be compared with opinions, 
preferences etc, where the movement of the individuals would be equivalent to the shift of those 
opinions inside a social system. Individuals may hold some ideas or positions, and at the same 
time show some 'sympathies' or tendencies towards others, often in the close vicinity of the ideas 
that they currently hold. If these sympathies are sustained for long enough or are very strong, the 
positions will shift towards the sympathised convictions. This idea of sympathies or tendencies is 
similar to the direction vectors in the swarm model. The different clusters of agents that emerge 
and the region they define could be compared in a social system with close sets of ideas, 
"ideologies" or shared beliefs.

Since there is some kind of ‘conversational’ human/machine relationship between the swarm and 
a person interacting with it, the forms work in some way as signs, in the sense that they are 
interpreted by the person and meanings attached to them, such as good/bad, spider-like, spongy, 
etc. The swarm tends to ‘understand’ and ‘agree’ with the choices made by the person interacting 
with it, but it also seems to ‘disagree’ slightly, or at least to not fully understand the preferences of 
the user. It is only in this way that the conversation is possible, and the consensual domain formed. 
If the machine would agree immediately, that is, if all agents would converge exactly to the point 
specified, conversation would be impossible. Through this game of differences the conversation 
can evolve.

Thus, if we understand the forms of the phenotypes as some kind of sign their relations are similar 
as the signs in a linguistic system. The mechanics of these resembles the one of the swarm: ‘As 
soon as a certain meaning is generated for a sign, it reverberates through the system. Through the 
various loops and pathways, this disturbance of the traces is reflected back on the sign in 
question, shifting its ‘original’ meaning, even if only imperceptibly. …Each trace is not only 
delayed, but also subjugated by every other trace’. [19]

Even more similarities emerge if we think of a phase space of signs, or the space of all their 
possible meanings. ‘Words or signs, do not have fixed positions. The relationships between signs 
are not stable enough for each sign to be determined exactly. In a way interaction is only possible 
if there is some ‘space’ between signs. There are always more possibilities than can be actualized 
(Luhmann 1985). The meaning of a sign is the result of the play in the space between signs. Signs 
in a complex system always have an excess of meaning, with only some of the potential meaning 
realized in specific situations.’ [20]

2.2.4 Comparison between models of adaptation. 



As we have seen in comparison with a memetic system the swarm model in relation with the 
evolution of ideas is more akin to their emergence through smooth changes of opinion than with 
the actual spontaneous birth of them. The discovery of new ‘ideas’ in the swarm is performed in a 
smooth way, by the tendency of the agents to overpass an optimum point and by the amplification 
of these mistakes. This slow evolution and drift between ideas becomes one of the substantial 
differences between Genetic systems such as the one constituted by memes, in which there is a 
random search mechanism involved (mutation) and that of the swarms, in which the shifting 
towards new ‘ideas’ is smooth. If mutation in memetic systems is thought as the accumulation of 
miss-replications or memetic drifts, the smoothness of the evolution of the swarm could then be 
understood as an equivalent continuous and low intensity memetic drift. In the swarm 
evolutionary paradigm random mechanisms similar to mutation could also be implemented, as 
perhaps the possibility of random jumps of the agents inside the search space. 

But there is also possible to highlight other differences between the genetic and the swarm models. 
Carl Popper [21] distinguishes between two basic levels of adaptation: genetic adaptation and 
behavioural adaptation. The main difference between the genetic and the behavioural levels of 
adaptation is this: mutations at the genetic level are not only aleatory, but also completely “blind”; 
they are not directed towards an end, and the survival of a mutation can not influence in the 
posterior mutations, not even in the frequency or in the probabilities of their apparition. In the 
behavioural level trials are also more or less random, but they are not completely “blind” in any of 
the ways mentioned. In the first place they are directed towards an end, and in the second, animals 
can also learn from the production of a trial. According to this, the swarm model could be 
compared to some extent with the behavioural model of adaptation, in the sense that the direction 
vectors of each individual can be interpreted as ‘directed towards an end’ (in the abstract space to 
optimise their positions). The direction vectors, at the same time also influence next ‘mutations’, 
or shifts in position. Popper also emphasises how behavioural adaptation is in general an 
intensively active process: in the animal –especially in the play of the young animal –, and even in 
the case of the plant, which investigates actively and constantly its environment.

Conclusion.

In this paper we have discussed the development of sensori-motor intelligence and its particular 
instance of the swarms. Those have been extensively studied from this point of view, and different 
models of them tested. Processes of learning have been developed through different approaches 
first in swarms that evolve in a geometrical environment, and finally in an abstract representation 
of a design space. The possibilities of such a model have been explained and then the model has 
been compared with evolution of ideas in social sitemaps and with other evolutionary systems, in 
particular genetic systems. Most of the conclusions established about this last model of swarm 
could also be extended to others. Instead of flocking algorithms, stigmergic swarms could be 
implemented in similar ways.
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