

ARCHITECTURAL STRUCTURE Week 11: Structural Considerations for Architects

Photo by Jorge Fernández Salas on Unsplash

Outline

1 INTRODUCTION

Aims

LOs

ASSIGNMENTS

2

 ASSIGNMENT 1- COMMON MISTAKES
 ASSIGNMENT 2 2

LECTURE:

3

COMPOSITION OF
 STRUCTURE

- TYPES OF LOADS
- STRUCTURAL
 CONSIDERATION
- LIFE CYCLE ANALYSIS

SUMMARY

4

• IN-CLASS ACTIVITY 2 TO BE SUBMITTED VIA

EMAIL

 \wedge

3

Aims and objectives

- To do a recap on **Assignment 1** submission
- To reiterate Assignment 2's submission requirements
- To look at **compositions of structure**
- To expand on **structural considerations** (rule of thumbs)
- To provide examples on classical tectonics and digital tectonics

Learning outcomes

Students will be able to..

01 Start to think about Assignment 2

02

Gain understanding on compositions of structure

Understand the common rule of thumbs in design practice

Part 1: Assignments recap

Photo by Ricardo Gomez Angel on Unsplash

Assignment 1:

common error

- Misunderstood assignment brief
- Missing grids
- Hatching (in elevation vs section, black colour hatching)
- Triangle on the dashed line (section or elevation) to show where the measurement of level is taken
- Dimension taking (centre-to-centre)
- Labelling 'void' convention
- Solid line vs dashed line
- Locations of columns on plan
- Odd measurements
- Missing required drawings

ANY QUESTIONS?

REMINDER: Assignment 1's deadline is on May 8th – Saturday (11:45pm)

Late submission is not tolerable Note: You had 2x4hr classes to work on this assignment Via email: mia@miatedjosaputro.com

Live assessments' link:

https://miatedjosaputro .com/2021/04/07/as-2021-assessments/ Protected: AS 2021: Live Assessments Documents

April 7, 2021 0 Comments

Assessment 1 documents:

1-AS_assessment brief_general

2-AS_assessment 1

3- AS_assessment 1- grading rubric

4- AS_assessment 1- example

5- Link to the SketchUp file: <u>https://www.dropbox.com/s/mzflu293nhbx576/5-%20AS_assessment%201-</u> %20sketchup%20file.zip?dl=0

Assessment 2 documents:

6-AS_assessment 2

Documents you need to look at:

- Document #1
- Document #6
- Document #7
- Fundamentals of academic writing

7- AS_assessment 2- grading rubric

Fundamentals of academic writing:

Avoiding Plagiarism

assessments NBU-AStructure

Part 2: Building system

Photo by Ricardo Gomez Angel on Unsplash

SUPERSTRUCTURE Above the foundation

Building systems

- Structural system
- Enclosure system
- Mechanical system

Ching, F. D. (2020). *Building construction illustrated*, John Wiley & Sons.

Building systems: Structural system

The structural system is designed and constructed to: **support and transmit applied gravity and lateral loads safely to the ground**. Without exceeding the allowable stresses in its members.

Elements of structural system:

- The superstructure (vertical extension of a building above the foundation)
- Columns, beams and load bearing walls, supporting floor and roof structure
- The substructure

Building systems: Structural system

Structural + envelope systems

You'll Want To Live In A Barn After Seeing These Barn Homes! | Home Design, Garden & Architecture Blog Magazine (goodshomedesign.com)

Building systems: Structural system

Timber Frame Kits CT, MA, RI, Shipped & Raised Nationwide: The Barn Yard & Great Country Garages (thebarnyardstore.com)

Building systems: Enclosure system

The enclosure system is the shell or envelope of a building. It consists of:

- Roof
- Exterior walls
- Windows
- Doors

Building systems: Enclosure system

DRUTE OFFICE

THE LOCAL PROPERTY AND ADDRESS OF THE PARTY OF THE PARTY

Case Studies

HelioTrace Façade System

SOM, Permasteelisa, and Adaptive Building Initiative, a co-venture between Buro Happold and Hoberman and Associates.

- Integration
- Kinetic shades
- Building enclosure
- Internal mechanicals
 Shading
 - Opaque panels from
 the mullions
 - 50% perforated panels parallel to the envelope
 - Effective shading: 78%
 - Annual solar gain reduction: 81%

Building systems: Enclosure system

Case Studies

building: **Kiefer Technic Showroom** architect: **Ernst Giselbrecht + Partner** location: **Steiermark**

- Dynamic Facade
- Automated control of folding panels
- Manual override by occupants

Source: Ernst Giselbrecht + Partner

Building systems: Mechanical system

The mechanical system provides important services to a building. It consists of:

- The water supply system
- Sewage disposal system
- Heating, ventilating and air conditioning systems
- Electric system
- Vertical transportation system
- Fire-fighting system

Building systems: Mechanical system

The building's high performance envelope and careful lighting design reduce conditioning loads, which are then met with an efficient mechanical system design. The mechanical systems, including variable speed drives on the chillers, AHU fans, and pumps, air-side heat recovery, water-side economizer and premium efficiency motors on chilled water and hot water pumps, reduce the energy required to remove the large heat loads and condition the building.

MECHANICAL SYSTEMS ENERGY SAVINGS -MRB reduces annual energy use 21% below ASHRAE 90.1-2004 VERIFICATION

-Measurement and verification of all HVAC and lighting systems -Post-occupancy thermal comfort survey

MECHANICAL SYSTEMS

SUSTAINABLE SITES	
WATER EFFICIENCY	
ENERGY / ATMOSPHERE	
MATERIALS / RESOURCES	
INDOOR ENVIRONMENTAL QUALITY	
INNOVATION & DESIGN PROCESS	

Building systems

MEP Building Information Modeling (BIM) Services (mepbim.com)

CARLING MADE

1.11

called 1.20 millions

Batters a deliabated in a load al data

ALC: 111

- 1. Hangers, suspension cables- axially loaded members in tension
- 2. Columns- axially loaded members in compression
- **3. Beams** members carrying bending moment and shear
- 4. Planar Trusses- all members axially loaded
- 5. Arches- curved members stressed mainly in direct compression
- 6. Cables- flexible members stressed in tension
- 7. Rigid frames- members stressed by moment and axial load
- 8. Plates or slabs- load carried by bending
- **9. Thin shells** (curved surface elements)- stresses acting primarily in plane of element

Columns- axially loaded members in compression

Figure 1.6: (a) Axially loaded column; (b) cantilever column with buckling load P_c ; (c) pin-supported column with buckling load $4P_c$; (d) beam-column. 24

Beams- members carrying bending moment and shear

Planar Trusses- all members axially loaded

Figure 1.11: (a) Cable in the shape of a catenary under dead load; (b) parabolic cable produced by a uniform load; (c) free-body diagram of a section of cable carrying a uniform vertical load; equilibrium in horizontal direction shows that the horizontal component of cable tension H is constant.

Leet, K., Uang, C.-M. & Gilbert, A. M. (2008). Fundamentals of structural analysis, McGraw-Hill.

Plates or slabs- load carried by bending

Figure 1.15: (a) Influence of boundaries on curvature; (b) beam and slab system; (c) slab and beams act as a unit: on left, concrete slab cast with stem to form a T-beam; right, shear connector joins concrete slab to steel beam, producing a composite beam; (d) a folded

Leet, K., Uang, C.-M. & Gilbert, A. M. (2008). Fundamentals of structural analysis, McGraw-Hill.

Thin shells (curved surface elements)- stresses acting primarily in plane of element

Leet, K., Uang, C.-M. & Gilbert, A. M. (2008). Fundamentals of structural analysis, McGraw-Hill.

Part 3: Types of loads

.....

at Additions

Photo by Ricardo Gomez Angel on Unsplash

Types of loads

VERTICAL LOADS LATERAL LOADS DEAD LOADS LIVE LOADS

WIND, SEISMIC AND LATERAL EARTH PRESSURES

Building's vertical loading

Building's vertical loading is based on:

- 1. Its intended use
- 2. Number of occupants
- 3. Type of construction
- \rightarrow Dead and live loads.

Dead loads depend on material used to construct the building **Live loads** are based on the anticipated occupants using the building Loads are often applied in **combination** based on their likelihood of <u>occurring simultaneously.</u>

Pilla, D. R. (2017). Elementary Structural Analysis and Design of Buildings: A Guide for Practicing Engineers and Students, CRC Press.

Vertical load: Warehouse vs residential project

Higher floor load (weights of contents) → higher dead loads. More occupants \rightarrow higher live loads

Vertical load: Dead loads

Dead load is the self-weight of the building that is composed of all construction materials that form the building.

The **structural system** must be able to support:

its **self-weight** (dead loads) **+ other possible loads** building might experience

Vertical load: Live loads

Live loads are the maximum loads imposed by the occupants using the building.

Components of buildings (roof, walls and floors) are to be designed to sustain: **Uniformly distributed live loads** and **concentrated live loads**.

Building codes help building practitioners with the regulations.

Lateral load

Building's location will dramatically affect its loading → affect structural system.

<u>Seismic loading</u> <u>Wind forces</u> <u>Lateral soil pressures</u>

Pilla, D. R. (2017). Elementary Structural Analysis and Design of Buildings: A Guide for Practicing Engineers and Students, CRC Press.

Lateral load

Buildings are design to respond lateral loads that are exerted on them, by generating resistance. A **building's lateral structural system** is specifically designed to **meet requirements of minimum design loads** as prescribed by the governing building code.

ACTIVITY 1

- 1. CHOOSE OF THE THREE AVAILABLE SECTIONAL PERSPECTIVE DRAWINGS. 5 MINS
- 2. INDIVIDUAL BRAINSTORMING SESSION: 30 MINS
 - IDENTITY MAIN STRUCTURAL COMPONENTS
 - IDENTIFY DIFFERENT TYPES OF LOADS ON BUILDING THE ARCHITECT NEED TO CONSIDER
 - HOW DO WE CONSIDER THEM?
 SKETCH ON THE DRAWING

São Paolo Museum of Art | São Paolo, Brazil

This cultural center comprises three stacked volumetric parts: the first suspended 26 ft 3 in (8 m) in the air, the second submerged below grade, and the third located in between—an exterior belvedere at street level. Two pairs of hollow prestressed 8-ft-2-in-by-11-ft-6-in (2,5 by 3,5 m)

concrete frames span the 243-ft (74.1 m) length of the upper volume, suspending two floors. The lower floor contains offices, a library, and a central exhibition space, with circulation corridors located immediately below the concrete beam. On the upper level, the concrete beams are external, producing an unimpeded exhibition hall enclosed by a curtain wall on all four sides. An external stair and elevator link the suspended volume and the plaza with the below-grade civic hall, auditoriums, theater, library, restaurant, and service spaces. Exploiting the topography of its Lina Bo Bardi | 1968

urban site, this stacked complex is paradoxically both subterranean and

floating, camouflaged and monumental, compressed and expansive.

39

59

Extrusion

Lewis, P., Tsutumaki, M. & Lewis, D. J. (2016). *Manual of section*, Chronicle Books.

Palace of Labor Turin, italy

Covering 269,098 sq ft (25,000 sq m), this enormous exhibition hall and training center was designed in part as a response to the expedited construction sequence of a competition. Built in eleven months, the roof was conceived these units, built one by one, allowed interiors and the glass enclosure to as sixteen individual 82-ft-tall (25 m) mushroomlike forms, each consisting

of a 65-ft-7-in (20 m) cast-in-place reinforced-concrete column topped with a 131-ft-3-in (40 m) square steel roof assembly. The accumulation of be constructed prior to the completion of the entire roof. The large concrete

columns taper from a 16-ft-5-in-wide (5 m) cruciform, to a 8-ft-2-indiameter (2.5 m) circle, to which are anchored twenty radiating steel-beam spokes that support the roof. Continuous glass strips run between the structures, allowing natural light into the space and registering the autonomy

Pier Luigi Nervi | 1961

of each massive structural unit. A row of external steel ribs spans between a perimeter mezzanine and the roof to stiffen the enclosing glass curtain. The height and scale of this section exceeds conventions and transforms this extruded section into a grand civic space and spectacle.

40

47

Bennati Cabin | Lake Arrowhead, California, USA

An early example of the A-frame vacation home, this two-bedroom cabin is structured by fourteen equilateral, triangular wood frames, 24 tf (7.3 m) on each side, placed 4 ft (1.2 m) apart. Rather than being positioned above rectilinear walls as in a typical wood-framed house, here the roof reaches

down to the bottom of the enclosure. The common spaces of the cabin are on the wider lower level, and two bedrooms with bunks are on the narrower upper level. Pairs of 2-by-8-in (5.1 by 20.3 cm) horizontal beams attached to each 3-by-6-in (7.6 by 15.2 cm) roof raffer support the floors and resist the outward thrust of

the roof. Vertical windows, which extend the interior space horizontally, and custom furniture integrated with the acute triangular frame enable the lower corners to be inhabited. The wood building anchors to a stone base that negotiates the topography and extends vertically through the house as the Rudolph Schindler | 1937

41

 \wedge

fireplace chimney. A staircase clad in plywood aligns with the chimney. In addition to providing an efficient shape for a wood structure, the section defines the organization of the house and fulfills the mandates of local aesthetic building ordinances, which require Alpine themes.

Part 4: Structural considerations

Photo by Ricardo Gomez Angel on Unsplash

1. Aims

- 2. The importance
- 3. Using rules of thumb

4. How do they impact out design process?

4.1- Aims and Rationale

When designing a structure, we must account for its safety, aesthetics and serviceability. Also we need to take into consideration economic and environmental constraints.

Preliminary design needs to be analysed to ensure that it has its required **stiffness** and **strength**.

4.2- The importance as an architect to gain basic understanding

Relationship between structural analysis and design phases

1	CONCEPTUAL DESIGN	Designer begins by considering all possible layouts and structural system which might satisfy requirements of project. Architects and engineers consult as a team to establish layouts with efficient structural system and meeting architectural requirements of the project.
2	PRELIMINARY DESIGN	Engineers chose from the conceptual design and sizes their main components. The preliminary proportioning of structural membe r requires understanding of: structural behaviour and a loading condition knowledge.
3	ANALYSIS OF PRELIMINARY DESIGNS	Using estimated values of load, the engineer carries out an analysis of several structural systems .

Leet, K., Uang, C.-M. & Gilbert, A. M. (2008). Fundamentals of structural analysis, McGraw-Hill.

45

4.2- The importance as an architect to gain basic understanding

4	REDESIGN OF THE STRUCTURES	From the result of preliminary designs, (structural) designers recomputes the proportions of the main elements of all structures.
5	EVALUATION OF PRELIMINARY DESIGNS	The design is compared with regard to cost, availability of materials, appearance, maintenance, time for construction and other important considerations. The structure best satisfying client's criteria is selected for further refinement in the final design phase.
6	FINAL DESIGN AND ANALYSIS PHASES	The engineer makes minor adjustments to the selected structure to improve: economy and appearance . Strength and stiffness of the structure are evaluated for all significant loads and combination of loads. Final design will also reveal certain deficiencies, the designer will have to adjust. Members are sized with regards to design codes, and also taking into account each material's special properties.

4.3- Rules of thumbs

McLean, W., Silver, P. & Evans, P. (2013). *Structural engineering for architects: a handbook*, Laurence King.

Allen, E. & Iano, J. (2017). *The architect's studio companion: Rules of thumb for preliminary design*, John Wiley & Sons.

47

CONTENTS

c	OVER
1	THE ARCHITECT'S STUDIO COMPANION
c	OPYRIGHT
A	CKNOWLEDGMENTS
1	IOW TO USE THIS BOOK
s	ECTION 1 DESIGNING WITH BUILDING CODES
-	1 DESIGNING WITH BUILDING CODES
	BUILDING CODES AND ZONING ORDINANCES
	OCCUPANCIES: INTERNATIONAL BUILDING CODE
	OCCUPANCIES: NATIONAL BUILDING CODE OF CANADA
S	ECTION 2 DESIGNING THE STRUCTURE
-	1 SELECTING THE STRUCTURAL SYSTEM
	BUILDING CODE CRITERIA FOR THE SELECTION OF
	STRUCTURAL SYSTEMS
	DESIGN CRITERIA FOR THE SELECTION OF STRUCTURAL
	SYSTEMS
	DESIGN CRITERIA: SUMMARY CHART
	PRACTICAL SPAN RANGES FOR STRUCTURAL SYSTEMS
	LIVE LOAD RANGES FOR BUILDING OCCUPANCIES
	LIVE LOAD RANGES FOR STRUCTURAL SYSTEMS
	SOME TYPICAL CHOICES OF STRUCTURAL SYSTEMS FOR
	DIFFERENT BUILDING TYPES
	2 CONFIGURING THE STRUCTURAL SYSTEM
	LATERAL STABILITY AND STRUCTURAL SYSTEMS
	WALL AND SLAB SYSTEMS
	COLUMN AND BEAM SYSTEMS
	TALL BUILDING STRUCTURES
	TALL BUILDING STRUCTURES
	3 SIZING THE STRUCTURAL SYSTEM
	WOOD STRUCTURAL SYSTEMS
	WOOD STUD WALLS
	WOOD FLOOR JOISTS
	WOOD ROOF RAFTERS
	WOOD FLOOR AND ROOF TRUSSES-LIGHT
	WOOD COLUMNS
	WOOD DECKING

WOOD BEAMS GLUE-LAMINATED WOOD BEAMS CROSS-LAMINATED TIMBER WOOD TRUSSES-HEAVY GLUE-LAMINATED WOOD ARCHES MASONRY STRUCTURAL SYSTEMS BRICK MASONRY COLUMNS BRICK MASONRY WALLS BRICK MASONRY LINTELS BRICK MASONRY ARCHES CONCRETE MASONRY COLUMNS CONCRETE MASONRY WALLS CONCRETE MASONRY LINTELS STEEL STRUCTURAL SYSTEMS LIGHTWEIGHT STEEL WALL STUDS LIGHTWEIGHT STEEL FLOOR JOISTS STRUCTURAL STEEL COLUMNS STRUCTURAL HOLLOW STEEL COLUMNS STEEL FLOOR AND ROOF DECKING STRUCTURAL STEEL BEAMS AND GIRDERS OPEN-WEB STEEL JOISTS SINGLE-STORY RIGID STEEL FRAMES STRUCTURAL STEEL TRUSSES SITECAST CONCRETE STRUCTURAL SYSTEMS SITECAST CONCRETE COLUMNS SITECAST CONCRETE WALLS SITECAST CONCRETE BEAMS AND GIRDERS SITECAST CONCRETE ONE-WAY SOLID SLAB SITECAST CONCRETE ONE-WAY JOISTS SITECAST CONCRETE TWO-WAY FLAT PLATE SITECAST CONCRETE TWO-WAY FLAT SLAB SITECAST CONCRETE WAFFLE SLAB PRECAST CONCRETE STRUCTURAL SYSTEMS PRECAST CONCRETE COLUMNS PRECAST CONCRETE WALL PANELS PRECAST CONCRETE BEAMS AND GIRDERS PRECAST CONCRETE SLABS PRECAST CONCRETE SINGLE AND DOUBLE TEES

48

 \wedge

Allen, E. & Iano, J. (2017). The architect's studio companion: Rules of thumb for preliminary design, John Wiley & Sons.

		WOOD AND MASONRY			STEEL			SITECAST CONCRETE								1	PRECAST CON			CRETE				
	4.3-	Pages 58-65	Pages 66–73	Pages 74-75	Pages 76-79	Pages 81-93	Pages 94-97	Pages 98-106	Page 107	Page 108	Pages 116-117	Pages 116-117	Pages 118-119	Pages 118–119	Pages 120-121	Pages 120-121	Pages 122-123	Pages 122-123	Pages 124–125	Pages 124–125	Pages 134–135	Pages 134-135	Pages 136–137	Pages 136-137
	Rules of thumbs GIVE SPECIAL CONSIDERATION TO THE SYSTEM INDICATED IF YOU WISH TO:	Light Wood Frame	Heavy Timber Frame	Cross-Laminated Timber	Long-Span Wood Systems	Masonry Systems	Lightweight Steel Framing	SteelFrame	Single-Story Rigid Steel Frame	Trusses	One-Way Solid Slab	Posttensioned One-Way Solid Slab	One-Way Joist	Posttensioned One-Way Joist	Two-Way Flat Plate	Posttensioned Two-Way Flat Plate	Two-Way Flat Slab	Posttensioned Two-Way Flat Slab	Waffle Slab	Posttensioned Waffle Slab	Solid Slab	Hollow-Core Slab	Double Tee	Single Tee
	Create highly irregular build form			1.1	1.21	•	•		E.2.2		•				•	•	•	•						
	Expose the structure while retaining a high fire-resistance rating		•			•						•	•	•			•		•	•	•		•	•
	Allow column placements that deviate from a regular grid							•							•	•	•	•						
	Minimize floor thickness			•		1	1					•			•	•	•		-	1	•	•		
	Minimize the area occupied by columns or bearing walls			•	•			•	•	•			•	•				•	•				•	•
	Allow for changes in the building over time		•		•	•	•			•	•		•			l l l l				1	•	•		
	Permit construction under adverse weather conditions	•	•	•			•	•	•	1											•	•	•	•
	Minimize site disturbance		•		•			•						_							•	•	•	•
	Minimize off-site fabrication time	•				•	•				•	•	•	•	•	•	•	•	•	•				
	Minimize on-site erection time		•	•																	•	•	•	•
	Minimize construction time for a one- or two-story building	•	•	•			•	•	•													-		
	Minimize construction time for a 5- to 20-story building			•				•				•	•	•	•	•	•	•	•	•	•	•	•	•
	Minimize construction time for a building 30 stories or more in height							•			•	•			•	•	•	•			•	•		
Allen, E. & Iano, J.	Avoid the need for diagonal bracing or shear walls							•	•		•	•	•	•	•	•	•		•	•				
(2017). The architect's studio	Minimize the dead load on a foundation		•	•				•																
companion: Rules of	Minimize structural distress due to unstable foundation conditions	•	•	•				•													•	•	•	•
thumb for preliminary design	Minimize the number of separate trades needed to complete a building			•		•																		
John Wiley & Sons.	Provide concealed spaces for ducts, pipes, etc.	•					•																	

19

PRACTICAL SPAN RANGES FOR STRUCTURAL

SYSTEMS

Rules of thumbs

This chart gives typical practical span ranges for various structural systems. Spans beyond the ranges indicated may be possible in unique circumstances. Page references are included where a system indicated is covered in greater detail elsewhere in this book.

						Span R	lange		
STRUCTURAL	SYSTEM	Pages	10' 3 m	20' 6 m	30' 9 m	50' 15 m	100' 30 m	200' 300' 60 m 90 m	500 150 m
WOOD	Joists Decking Solid Beams Rafter Pairs Cross-Laminated Timbers Light Floor Trusses Light Roof Trusses Glue-Laminated Beams Heavy Trusses Glue-Laminated Arches Domes	60-61 68-69 70-71 62-63 74-75 64-65 64-65 72-73 76-77 78-79							
BRICK & CONCRETE MASONRY	Lintels Arches	86, 92 87	-	-				-	
STEEL	Corrugated Decking Lightweight Steel Joists Beams Open-Web Joists Single-Story Rigid Frames Heavy Trusses Arches and Vaults Space Frame Domes Cable-Stayed Suspension	102-103 96-97 104-105 106 107 108						-	
SITECAST CONCRETE	One-Way Slabs Two-Way Slabs One-Way Joists Wafile Slab Beams Folded Plates and Shells Domes Arches	116-117 122-123 118-119 124-125 114-115		-					
PRECAST CONCRETE	Slabs Beams Double Tees Single Tees	134–135 132–133 136–137 136–137	1.1			-			
PNEUMATIC	Air-Inflated Air-Supported		-		-				

Allen, E. & Iano, J. (2017). The architect's studio companion: Rules of thumb for preliminary design, John Wiley & Sons.

Previously in Week 4 (Steel Structure).. Assembling and connecting steel loadbearing components

MEANS OF CONNECTIONS COLUMNS BEAMS COLUMN BASE BRACING VIERENDEEL GIRDERS LATTICE BEAMS

Reichel, A., Ackermann, P., Hentschel, A. & Hochberg, A. (2012). Building with steel. *Building with Steel.* Birkhäuser.

Rule of thumb: steel frame

- Span (centre-to-centre):
 - Floor beam- 12m max
 - Roof trusses- 17m max
 - Space frames- 60m max
- Governing factor → deflection limit, vibration limit
- Grouping and repetition
- Connection detail and design are important (bolted or welded, limit welding connection)
- Limited length to be transported
- Mixing metal materials (usually steel and aluminium) might lead to potential corrosion
- Determining beam depth: a reasonable estimate is 'span divided by 24 (L/24)'
- Maximum cantilever length equals to 1/3 length of the back-span

Rule of thumb: timber construction

Properties of engineered timber products

		Engineered timber products include Glue-laminated beams (glulam), Laminated Veneer Lumber (LVL), and Laminated Strand Lumber (LSL). Each of these products is fabricated from layers of sawn timber, which are glued together to form the beam. This process increases the homogeneity of the final product as all the imperfections within sawn timber, such as knots, are distributed along the beam rather than being concentrated at particular	positions. This in turn increases the strength of the element. The fabrication process also reduces the tendency of the members to warp, twist, or bow. Engineered timber products can be fabricated to a range of section sizes and lengths.		
	Beam type	Comments		Typical span range	Typical span/depth ratio
and the second second	Glulam beams	 Typically used in lightweight timber roofs (often exposed) or light commercial structures Can be fabricated to significantly longer lengths than standard sawn-timber joists Strength subject to grade of timber used and number of laminations, and is advised by specific manufacturer 		Roof beams 20–65ft for standard section sizes Can increase to 165ft with nonstandard sizes Floor beams 15–45ft for standard section sizes	20:1
	Laminated Veneer Lumber (LVL) and Laminated Strand Lumber (LSL)	 Can be used as simple beams similar to glulam Typically used in residential, educational, or light commercial structures Can be fabricated to significantly longer lengths than standard sawn-timber joist Strength subject to grade of timber used and number of laminations, and is advised by specific manufacturer Ranges and span-to-depth ratios similar to glulam. 		Similar to glulam	20:1
	Timber I-sections	 Manufactured with either sawn-timber or LVL flanges and a plywood or Oriented Strand Board (OSB) web Typically used in residential or light commercial structures Can be fabricated to significantly longer lengths than standard sawn-timber joists Strength subject to grade of timber used and number of laminations, and is advised by specific manufacturer Fanges and span-to-depth ratios similar to sawn-timber beams 		10-20ft	20:1 Subject to grade of timber, width, and spacing of joists

McLean, W., Silver, P. & Evans, P. (2013). Structural engineering for architects: a handbook, Laurence King.

Rule of thumb: timber construction

- 2 or 4 feet modular plan dimension will reduce waste (600 or 1200mm)
- Roof trusses space no greater than 1.2-2.4m without additional support
- Wall studs are commonly put spaced at 400-600mm on centre
- Decking 150-200mm
- Commonly available length of wood: 2.4m

Allen, E. & Iano, J. (2017). *The architect's studio companion: Rules of thumb for preliminary design*, John Wiley & Sons.

https://youtu.be/gAFS0A3xDJk

Rule of thumb: timber construction

thumb for preliminary design, John Wiley & Sons.

Rule of thumb: concrete structure

- Up to 10m span or less: Beam depth (effective span divide by 12)
- Up to 10m span or less: Slab depth (span divide by 30), only applicable for simply supported slab and continuous slab. But not for cantilevered slab.
- Column size (no rule of thumb, will be based on actual loading), but for small structure and normal loading we can use the concept of short column (effective length divide by 12). That is the minimum size.

4.4. How do these impact our design process?

¹ CONCEPTUAL DESIG	ίN
-------------------------------	----

PRELIMINARY DESIGN

Designer begins by considering all possible layouts and structural system which might satisfy requirements of project. Architects and engineers consult as a team to establish layouts with efficient structural system and meeting architectural requirements of the project. Engineers chose from the conceptual design and sizes their main components. The preliminary proportioning of **structural membe**r requires understanding of: structural behaviour and a loading condition knowledge. ANALYSIS OF PRELIMINARY DESIGNS Using estimated values of load, the engineer carries out an

Previously in Week 1..

Practitioners dialogue

sox40 DESIGN WORKSHOP
 Structural Engineer vs Architect - Design Meeting
 1,490,661 views - 15 Dec 2019

1 42K 41 436 → SHARE =+ SAVE ...

A DESIGN MEETING

https://youtu.be/29xtjX8rAk

ACTIVITY 2

- 1. WORK IN GROUPS (FIRST PRESENTATION GROUPS): 45MINS
- 2. HYPOTHETICALLY YOU ARE TO DESIGN MULTIPLE PRE-FABRICATED VILLAS ON CONTOURED LAND
- 3. YOU CAN DEFINE YOUR OWN CLIMATE CONTEXT AND LOCATION
- 4. SIZES ARE- SEE NEXT SLIDE 7.2 X 14.4M (8 VILLAS) 7.2 X 7.2M (4 VILLAS)
- 6. CHOOSE THE MAIN STRUCTURE SYSTEM (STEEL/TIMBER/CONCRETE)
- 7. APPLY THE RULE OF THUMB
- 8. SUBMIT GROUP WORK VIA EMAIL

ACTIVITY 2

EXPECTED OUTCOME:

- SKETCHES AND EXPLANATION ABOUT THE CHOSEN STRUCTURAL MATERIAL
- MAIN STRUCTURAL ELEMENTS

Photo by Elena Koycheva on Unsplash

63

Part 5: Structural analysis

Photo by Ricardo Gomez Angel on Unsplash

Digital tectonics

66

Digital tectonics: Kangaroo^{snes} Set View Display Select Viewport Layout Visibility Transform Curve Tools Surface Tools Solid Tools Mesh Tools Render enables designers to interact with form through 2 🔇 🥔 🔇 🜑 particle-spring system simulations in 1.0.0007 real time. Osnan SmartTrack Gumball Record History Filter Mer

Re-iterating aims and objectives

- To do a recap on **Assignment 1** submission
- To reiterate Assignment 2's submission requirements
- To look at **compositions of structure**
- To expand on **structural considerations** (rule of thumbs)
- To provide examples on classical tectonics and digital tectonics