
�

Corresponding author:

T. Wortmann.
thomas_wortmann@

mymail.sutd.edu.sg
g parametric design: Digital
Differentiatin
workflows in contemporary architecture and
construction
Thomas Wortmann and Bige Tunçer, Singapore University of Technology and

Design, 8 Somapah Rd, 487372, Singapore
This paper examines Parametric Design (PD) in contemporary architectural

practice. It considers three case studies: The Future of Us pavilion, the Louvre

Abu Dhabi and the Morpheus Hotel. The case studies illustrate how, compared

to non-parametrically and older parametrically designed projects, PD is

employed to generate, document and fabricate designs with a greater level of

detail and differentiation, often at the level of individual building components.

We argue that such differentiation cannot be achieved with conventional

Building Information Modelling and without customizing existing software. We

compare the case studies’ PD approaches (objected-oriented programming,

functional programming, visual programming and distributed visual

programming) and decomposition, algorithms and data structures as crucial

factors for the practical viability of complex parametric models and as key

aspects of PD thinking.

2017 Elsevier Ltd. All rights reserved.

Keywords: parametric design, design automation, architectural design, software

design, parametric master model
T
his paper examines Parametric Design (PD) from the perspective of

contemporary architectural practice. Parametric design has been

applied in architectural practice for more than two decades, but con-

tinues to evolve as software and knowhow become available more widely. The

paper presents an extended case study of developing a parametric, patterned

envelope for tropical climates, which culminates in the realization of a 40-m

span grid-shell clad with around 11 000 individual, perforated panels: The

Future of Us (FoU) pavilion in Singapore by the Advanced Architecture Lab-

oratory (AAL). It compares this case with two others, described more briefly:

The Louvre Abu Dhabi (LAD) by Ateliers Jean Nouvel in the United Arab

Emirates and the Morpheus Hotel by Zaha Hadid Architects in Macau, Spe-

cial Administrative Region of the People’s Republic of China.

The case studies illustrate how, compared to non-parametrically and older

parametrically designed projects, PD is employed to generate, document

and fabricate designs with a greater level of detail and differentiation, often

at the level of individual building components. Such differentiation allows a
www.elsevier.com/locate/destud

0142-694X Design Studies 52 (2017) 173e197

http://dx.doi.org/10.1016/j.destud.2017.05.004 173
� 2017 Elsevier Ltd. All rights reserved.

mailto:thomas_wortmann@mymail.sutd.edu.sg
mailto:thomas_wortmann@mymail.sutd.edu.sg
http://crossmark.crossref.org/dialog/?doi=10.1016/j.destud.2017.05.004&domain=pdf
http://www.elsevier.com/locate/destud
http://dx.doi.org/10.1016/j.destud.2017.05.004


174
wider spectrum of architectural form, richer architectural experiences and the

integration of environmental, structural and buildability concerns. From this

perspective, the case studies exemplify the role of PD in “supporting

complexity” (Oxman, 2006).

Based on the case studies, we argue that such differentiation cannot be

achieved with conventional Building Information Modelling (BIM) and

without, to different degrees, customizing existing software through textual

computer-programming. The paper examines the cases’ digital workflows

and identifies and compares four PD approaches: objected-oriented program-

ming, functional programming, visual programming and distributed visual

programming. Objected-oriented programming structures computers pro-

grams into objects that are composed of data and operations, while functional

programming structures them into nested hierarchies of operations using

higher-order functions (Abelson & Sussman, 1996). To increase the under-

standability and reusability of object-oriented programs, an object should

hold only the data and functions that are relevant to it, with interactions be-

tween objects kept to a minimum. Compared to functional programming,

the resulting constructs tend to be larger and more complex, but it can be ad-

vantageous to have the information about an object directly associated with it.

Visual programming environments, such as Grasshopper, allow users to create

a computer program by dragging-and-dropping predefined operations and

connecting them into a directed, acyclic graph (Janssen & Chen, 2011).

Distributed visual data flow programming combines several visual programs

into a larger network. The paper identifies decomposition, algorithms and

data structures as crucial factors for the practical viability of complex para-

metric models and as key aspects of PD thinking.

All case studies employ PD in conjunction with a master model that is shared

between architects, consultants and, in two cases, contractors. In all cases, this

master model is generated parametrically and serves as a basis for further

parametric design development, automated documentation and numerically-

controlled prefabrication. Before presenting the case studies, the paper reviews

earlier applications and case studies of PD.
1 Background
The theoretical literature often understands PD in terms of design generation

(Oxman, 2006) or exploration (Woodbury, 2010). Hudson (2010) identifies six

(overlapping) applications of PD in architectural practice: (1) the translation

of design ideas into parametric models, (2) the rationalization of designs

into buildable shapes and components, (3) the control and setting-out of archi-

tectural forms, (4) the generation and testing of design variants based on

various criteria and specialist input, i.e., efficiency-focused design exploration

or optimization, (5) the sharing of information, which, for the case studies
Design Studies Vol 52 No. C September 2017



Differentiating parametr
presented in this paper includes the automated generation of construction doc-

uments and (6) the capture of design knowledge from different stakeholders.

Whitehead (2003) describes early parametric models used by the architectural

practice Foster and Partners to explore, control and rationalize building

forms. The models are defined with computer-programming and based on geo-

metric primitives such as cones and torus patches. Whitehead observes that

“most designers already think programmatically, but having neither the time

nor the inclination to learn programming skills, do not have the means to ex-

press or explore these patterns of thought” (Whitehead, 2003).

Hesselgren, Charitou, and Dritsas (2007) describe the PD of the (unrealized)

288-m tall Bishopsgate Tower in the City of London. They model the tower’s

form in an early version of Generative Components, a visual programming

environment. A custom server programmed in C#, an objected-oriented pro-

gramming language, stores design parameters and data. They validate para-

metric models with custom scripts that, using output data, recreate them in

another 3D-modelling environment, Rhinoceros. They pay special attention

to the configuration of the facade components, which are identical except

for their opening angles. In summary, they use PD for formal exploration,

the extraction of building data and the generation of design variants for testing

(including structural and environmental analysis). Hesselgren et al. charac-

terize PD as “a new mode of thinking” that allows designers “to impose im-

plicit and explicit constraints in both sub-domains but also the entirety of

the design space” (Hesselgren et al., 2007).

Park and Holt (2010) employ a computer-programmed, software-independent

master model to control the shape and panelization of the Lotte Super Tower

in Seoul. This master model anchors a “loosely organized network of scripts”

used by the architects and structural consultants to develop the tower’s struc-

ture and facade construction. Park and Holt apply PD for geometric control,

rationalization and knowledge capture. For them, PD thinking is the abstrac-

tion of “a specific task into its operation and inputs” (Park & Holt, 2010).

Shepherd, Hudson, and Hines (2011) describe the PD process of the Aviva Sta-

dium, Dublin, “the first stadium to be designed from start to finish using

commercially available parametric modelling software”, namely Generative

Components. A parametric master model controls the stadium’s envelope,

which is further developed in separate parametric models for the stadium’s

structure and cladding. Both models serve for generate-and-test processes;

the former to optimize the structure and the latter to adapt the rotating louvers

of the cladding to wind and rain. The louvers have differentiated lengths and

orientations, but identical profiles and connection details. The cladding model

captures design knowledge from facade design specialists and the cladding

contractor (Hudson, 2010).
ic design 175



176
2 Case studies
The selection of the case studies follows five criteria: (1) The projects are either

built or under construction. (2) The projects are contemporary in that they

either got completed recently or are under construction. The FoU pavilion

opened at the end of 2015. The LAD is scheduled to open in 2017 and the

Morpheus Hotel in 2018. (3) The projects use differentiated, i.e. non-

repeated building elements, which in all cases are facade components. (4)

PD was used to create, manage, document and prefabricate this differentia-

tion. (5) Documentation of the projects’ design processes is available; in the

case of the FoU, from the first author’s personal work and for the remaining

two projects as online video lectures.

2.1 The Future of Us
The parametric model of the FoU grid-shell in Singapore was first developed

for two smaller design projects, a speculative pavilion and a prototypical wall-

screen. This section details the model’s objects in terms of inputs, outputs, and

the algorithms that connect them (see Figure 1).

The model’s inputs are (1) a triangular mesh representing the form and pane-

lization of the design, (2) pattern tiles defining the pattern for the design’s en-

velope and (3) density requirements for the envelope represented as a point

cloud. These inputs are integrated by labelling the triangular mesh. This

labelled mesh encapsulates different kinds of data, such as the components’

corner points, envelope density requirements (i.e. its opening percentage), cur-

vature, anddin the case of the grid shelldstructural member dimensions and

orientations. These data stem from various participants in the design process

and include simulation results as well as subjective design considerations.

Based on these inputs, the model interprets every mesh face as a differentiated

building component. The parametric model expresses the components as four

output geometries: 2D for graphical visualization (1), solid for 3D printing (2),

foldable resulting in cut sheets for sheet metal components (3) and foldable re-

sulting in cut sheets and assembly drawings for sheet metal panels mounted on

a substructure (4).

The inputs and outputs are implemented as classes in IronPython using Rhino-

Script, a scripting language for Rhinoceros. The classes define objects for, for

example, the pattern tiles, the labelled mesh, and the four types of building

components. This model allowed a broad range of highly differentiated out-

puts: a digital model that provides visual feedback, a 3D-printed scale model

of a pavilion with a patterned envelope, two room-size, prototypical wall

screens of varying density assembled from folded aluminium sheet compo-

nents and a large grid shell, covered on top and bottom with around 11 000

unique, patterned aluminium panels. The decomposition of the inputs allowed

the design teams to simultaneously work on the architectural appearance of
Design Studies Vol 52 No. C September 2017



Figure 1 Overview of the

parametric model of the

Future of Us grid-shell.

Differentiating parametr
the designs, their performance and fabrication, while the organization into

classes afforded rapid changes to the parametric model (such as integrating

additional input data or output geometries).

2.1.1 Half-edge mesh representation
The first input to the model is a triangular mesh representing a design’s form

and panelization. A common representation in computer graphics, a mesh is

an interconnected collection of vertices (points) that are connected by edges

to form faces (polygons), in this case triangles. Every mesh face serves as the

base geometry of one building component. To represent this mesh efficiently,

we employ a half-edge-based data structure, which is the only polygonal mesh

representation that supports queries such as finding the faces incident to an

edge or the edges and faces incident to a vertex without additional computa-

tions (Botsch, Kobbelt, Pauly, Alliez, & Levy, 2010). Another advantage of

the half-edge data structure is that one can associate its different elements

(faces, half-edges, and vertices) with various kinds data. The parametric model

exploits this feature to store and retrieve various inputs in a quick and geomet-

rically organized manner.

A less efficient alternative is the face-based data structure that underlies com-

mon file formats for the exchange of three-dimensional information (e.g. STL

and OBJ) and is available in scripting and visual programming interfaces.

Figure 2 provides a visual comparison between face-based and half-edge-

based data structures. Rhinoceros provides only face-based meshes which the

model converts into a half-edge data structure in two straightforward steps:

(1) First, one traverses the sides of every face (according to the arrays of

indices in the face-based face array), creating one half-edge per side and

assigning previous and next half-edges according to the traversal of

each face. The traversal and assignment ensure that the half-edges for

each face form a closed ring, and that corresponding, i.e. opposite, half-
ic design 177



Figure 2 Comparison between

the face-based data structure

on the left and the half-edge

data structure on the right.

Both data structures repre-

sent an example mesh with

three triangles. Note that

some of the half-edges are

lacking a twin. Half-edges

without a twin indicate

“naked” half-edge on the

boundaries of a mesh, which

is one of the convenient fea-

tures of this data structure.

178
edges are pointing in opposite directions. Simultaneously, one creates a

new face array by storing the first half-edge of each face. The number

of operations for this step increases linearly with the number of vertices,

or O(n), since it requires one traversal per face.

(2) The second step pairs half-edges with their twins. Finding these pairs with

brute force by comparing each half-edge against every other half-edges

takes quadratic time, or O(n2). Sorting the half-edges according to the

Cartesian coordinates of their mid points reduces the required number

of operations to linearithmic time, or O(n log n). Due to the sorting,

twinned half-edges adjoin in the half-edge array, and thus can be refer-

enced to each other in a single pass while the three sorts of the Cartesian

coordinates require linearithmic time.

The above algorithm converts a face-based representation of a triangle mesh

provided by a 3D-modelling environment into a half-edge data structure in lin-

earithmic time, which in practice does not take more than a few seconds. The

resulting half-edge data structure requires constant time O(1) to process topo-

logical queries about neighbouring elements and to compute vertex normals,

edge normals and face normals.

2.1.2 Pattern tiles and envelope density requirements
The FoU uses a set of twenty parametrically-defined pattern tiles that achieve

a gradient of densities. This gradient is defined by each triangle’s corner points
Design Studies Vol 52 No. C September 2017



Differentiating parametr
(Figure 3). The pattern makes the regularity of individual panels and, in the

case of the grid-shell, the underlying, triangulated structure less apparent visu-

ally. The pattern tiles are implemented as a set of nested functions that exploit

the repetitions in the pattern. Given three corner points and three correspond-

ing density values, these functions construct a set of closed polylines from the

corner points, as defined by the appropriate pattern tile.

Modulating the pattern’s density can address shading and programmatic re-

quirements and create a differentiated play of light and shadow. A point cloud

of density values defines these requirements, with each point corresponding to

a mesh vertex. This point cloud can be created with various methods, for

example through generating random patterns, performance simulations,

ordin the case of programmatic requirementsddirect assignment. Impor-

tantly, these density values are editable manually, allowing local adjustments

by the designers. To transfer these values from the point cloud to the mesh

vertices in linearithmic time, one sorts the density values according to their

Cartesian coordinates.

2.1.3 Digital and 3D-printed model
The parametric model automatically generates geometry from two sources of

information: a triangular mesh representing both the envelope’s shape and

panelization and the user-editable point cloud. For the project for which the

model was developed originallyda speculative design for a parametric, digi-

tally fabricated pavilion in Singaporedthese density values were assigned ac-

cording two three considerations: Structural deflection (1), solar irradiance (2),

and program and views (3). The designers derived the values for the structural

and solar considerations from numerical simulations and manually painted a

coloured mesh to define the desired density for the programmatic consider-

ation. The structural consideration defined a lower bound for the envelope

density, while the average between the solar and programmatic considerations

defined the desired envelop density.

Aided by the parametric model, which rapidly interpreted the point cloud and

mesh vertices as wireframe and surface geometries, the designers created a

pavilion with a patterned envelope of varying density. This design was 3D-

printed as a 1:50 scale model. Due to the object-oriented separation of pattern,

pattern density and expression of envelope components, it was easy to extend

the parametric model to produce solid, 3D-printable envelope components by

extruding the base mesh along its vertex normals.

2.1.4 Prototypical wall screens
The designers further developed the concept of a patterned, gradated envelope

in two room-size installations in Venice and Singapore (Figure 4). For these

installations, the parametric model produced cut sheets for foldable
ic design 179



Figure 3 The twenty pattern

tiles for the envelope with

associated density values of

their corner points.

Figure 4 Prototypical wall

screen installed at the Na-

tional Design Centre in

Singapore. Picture Credit:

AAL

180
components that can be assembled easily into a double-curved wall. Each self-

supporting, integrated component consists of two folded pieces of

sheet aluminium, that when combined form a strong, triangular box.

Extruding the base mesh along its vertex normal, which was done for 3D-

printing, leads to components with twisted sides. To achieve non-twisting

sides for the folded aluminium components, the parametric model extruded

them along their edge normals instead. This change was easy to achieve in
Design Studies Vol 52 No. C September 2017



Figure 5 Overall view of the

Future of Us pavilion. The

dome on the left is still under

construction. Picture Credit:

Protag, Abel Art

Differentiating parametr
terms of the model, but led to slight geometric inconsistencies at the corner

points of the modules. These inconsistencies are solved by filleting the module

corners.

The aluminium pieces were cut on an industrial laser cutter and folded by

hand. The automatically generated cut sheets took material thicknesses,

folding radii, and tolerances into account. It was unnecessary to fold the pieces

to specific angles, because each triangular component could only be assembled

in exactly one way and no measurements were necessary to assemble the wall

screens.

2.1.5 Patterned grid shell cladding
A more practical application was the realization of a free-form, 40 meter-span

grid shell that was the architectural centrepiece of an important national exhi-

bition for Singapore’s 50-year jubilee (Figure 5). The architectural brief asked

for a connection between four prefabricated, standardized domes that housed

the exhibits. Since these completely closed, air-conditioned domes were suffi-

cient to protect the exhibits, the design team opted for a “tropical” envelope

that would provide shade and natural ventilation, but only partial rain protec-

tion. Sitting between the two major domes and defining the main entrance, the

free-form had three major openings and a tall central vault covering a third

dome completely.

Clad with a gradated pattern on top and bottom, this grid shell was a further

development of the wall screens discussed in the previous section. More strin-

gent structural requirements and a short time span of eight months between

the start of design development and the official opening, however, necessitated

an approach of cladding a steel structure with non-structural panels, versus the

self-supporting, integrated box components described in the previous section.

Nevertheless, designing, digitally fabricating, and coordinating the assembly

of the panels was by no means straightforward and lead to the development

of new capabilities for the parametric model.
ic design 181



Figure 6 The structural master mo

the right. The vertical main arches

references to colour in this figure

182
2.1.6 Integrating the parametric model with a structural
master model
Amajor difference with previous iterations was that the panels had to adapt to

the substructure provided by the grid shell, which was drawn by the structural

consultants. To facilitate coordination of the panels with the substructure, the

structural consultants provided a master model with beam centrelines, types,

and orientations indicated as lines perpendicular to the centrelines

(Figure 6). The main arches of the grid shell are either vertical or rotate around

a fixed axis, while the primary and secondary purlins align perpendicularly to

the free-form envelope. To define a clear interface between structure and

panels early in the process, the structural and design consultants agreed

that the panels’ supports on the beams would be located 300 milometers

from each end of a centreline.

This abstract 3D-model of the grid shell’s structure is integrated with the para-

metric model by matching the orientation lines to the beam centrelines, and the

beam centrelines to the edges of the half-edge data structure. In this way, the

model adapts individual panel to the supports provided by the underlying struc-

ture, whose locations depend on the depth of the beams and their rotations.

Since the layout of the substructure directly affects panel sizes and, indirectly,

the appearance of the pattern, several iterations of this master model were

exchanged between the design and structural consultants. In these iterations,

the structural consultants used Grasshopper, a visual dataflow modeler, to

generate new variations quickly, which the design consultants edited by

hand (Poirriez, Wortmann, Hudson, & Bouzida, 2016). The parametric model

supported these exchanges by allowing quick regenerations of the panel

geometry.

The pattern of the grid shell was defined in a manner similar to the original

pavilion design, with two inputs being solar irradiance and program. The third
del on the left indicates centerlines, element types and element orientations, with the resulting 3D geometry on

are colored black, the primary purlins dark blue, and the secondary purlins cyan. (For interpretation of the

legend, the reader is referred to the web version of this article.)

Design Studies Vol 52 No. C September 2017



Figure 7 The integrated mas-

ter model (colored according

to the labels representing the

required density) is on the

left, while the final 3D model

with structure and panels

generated from the master

model is on the right. (For

interpretation of the refer-

ences to colour in this figure

legend, the reader is referred

to the web version of this

article.)

Figure 8 Diagram 1 shows the

center lines and orientations

for a single triangle with the

substructure. Diagram 2

shows the panels’ bounding

planes and density values, dia-

gram 3 the panel’s mounting

strips, diagram 4 the panel’s

flanges, and diagram 5 the

completed panel. Diagram 6

shows the panel on the

substructure.

Differentiating parametr
input, instead of being structural, consisted of a larger scale pattern that

ensured visual variety from different distances (Figure 7).

2.1.7 Constructing the grid shell panels
The parametric model defines every panel with an abstract envelope composed

of several geometric planes (Figure 8). The sides of the envelope depend on the

planes defined by the orientations of the supporting structural elements, the

bottom planes on the height of the supporting elements, and the top plane

on a global thickness defined for the design. To achieve a homogenous depth

and appearance for the complete package of top panel, structural steel and

bottom panel, the depths of each panel’s sides individually vary depending

on the rotational orientations and cross sections of the underlying structural
5

2

1

1

4

3

1

3

6

1

4

2

ic design 183



Figure 9 Cut-away diagram

of the dome of the Louvre

Museum Abu Dhabi indi-

cating the spaceframe and

the four layers of stars. Pic-

ture Credit: Goswin Rothen-

thal, Waagner Biro

184
elements. The panels’ flanges are perpendicular to their tops and their

mounting strips are perpendicular to their flanges. Accordingly, the panels

could be fabricated with 90� bends only, but their geometry nevertheless

adapts to the non-perpendicularities of the underlying structure.

The master model in combination with the parametric model ensured a tight

coordination between the structural steel and the panels, which allowed the

creation of working drawings for both to proceed in parallel. The parametric

model generated not only the panel geometry, but also 1400 cut sheets for dig-

ital fabrication of the 11 000 panels and 53 assembly drawings (one per grid-

line). The coordination and automation provided by the parametric model

allowed the realization of the project to specification and in just eight months.
2.2 Louvre Abu Dhabi
The design of the LAD consists of several exhibition buildings (pavilions) sit-

uated along an open-air circulation system and surrounded by pools of water.

The arrangement of the pavilions evokes a vernacular Arabian urban

morphology. A large, circular dome shades the pavilions, open-air circulation

and pools. The dome is constructed as a steel space-frame and clad on both

sides with 8750 aluminium facade elements, so called “stars”, which form an

Arabian-style pattern (Figure 9). With a structural depth of 5 m and only

four supports (arranged in a square), the dome spans 165 m and is 26 m

high (Imbert et al., 2013).

The pattern of the dome’s cladding is not water-tight but modulates the sun-

light into a “rain of light” that is brighter on the roofs of the exhibition build-

ings and darker on the circulation areas and pools. In this way, the dome

creates an interesting play of light and shadow and a comfortable outdoor

climate. The daylight requirements are translated into a perforation ratio,

which define the width of individual stars. A map of perforation ratios was

developed through several iterations of generating a perforation map with
Design Studies Vol 52 No. C September 2017



Differentiating parametr
an inverse lighting simulation and validating the result with forward daylight

simulation (Tourre & Miguet, 2010). Unless indicated otherwise, the informa-

tion in the below sections stems from Rothenthal (2016a).

2.2.1 Parametric model
The cladding of the dome’s space-frame consists of eight layers (four top and

four bottom). All layers are composed from stars that are arranged on a bidi-

rectional grid. These grids are generated by intersecting a spherical cap with

two sets of planes. One set of planes is rotated around the X-axis and the other

around the Y-axis. These intersections yield more regular squares around the

sphere’s pole that gradually distort towards the edge. The grids’ size, and thus

the size of the stars, decreases with the layers’ distance to the space-frame.

Accordingly, most of the stars are different from each other. In addition, the

grids of the layers are rotated with respect to each other. This approach allows

a straightforward parametric definition of the stars’ geometry and materializa-

tion as building elements, while achieving the desired visual complexity. In

other words, unlike the models for the FoU and Morpheus Hotel, the

LAD’s model does not rely on an underlying geometry, but is strictly mathe-

matical, which simplifies the setting out of the stars. Building on earlier studies

developed by the architects and lighting consultants, this parametric model

was defined by the dome’s main contractor, Waagner Biro.

In contrast to the FoU and the Morpheus Hotel, the cladding adapts only

minimally to the underlying structure, whose top and bottom chords form

triangular grids. Instead, the pattern of the stars is intersected with the trian-

gular grids to define the locations of supporting pins for the cladding. The un-

derlying space-frame was defined as a parametric wireframe model that, early

in the design process, was shared online between architect, engineer, and con-

sultants (Imbert et al., 2013) and reconstructed by the contractor. Defining the

connections between the layered stars and the stars and the space-frame was

challenging. The quick regeneration of the model helped to overcome this

challenge.

Geometrically, a single star consists of four triangles based on the sides of a

single quadrilateral, with four stars resulting in an octagon in their centre.

Each centre line of these shapes is materialized with several aluminium pro-

files, which are snapped together. In this way, the width of the stars can be var-

ied for each centreline per the desired perforation ratio. This variation in

width, together with the transformations of the grids, modulates the daylight

and results in a specific geometry for every star. In short, the stars have differ-

entiated sizes and densities but share the same parametric model.

As in the FoU, the cladding’s geometry is stored in a half-edge data structure.

This structure naturally lends itself to define the stars’ geometry via offsets of
ic design 185



186
the various faces (triangles, quadrilaterals and octagons) and allows the direct

association of aluminium profiles with half-edges. The half-edges thus serve as

a numbering system for the 459 260 aluminium profiles.

This parametric model can express the stars in at least five different ways: (1)

As a “light” wireframe geometry of centrelines, (2) as a two-dimensional ge-

ometry where every centreline is expressed as two quadrilaterals, (3) a two-

dimensional wireframe where the quadrilaterals are further subdivided into in-

dividual profiles, (4) a three-dimensional geometry of the quadrilaterals and

(5) a three-dimensional geometry of the profiles. While (1) and (2) take a

few seconds to generate and serve to “debug” the parametric model, (3) and

(5) serve to visualize the resulting cladding. (3) can be generated in about

30 s and contains enough geometric information to define the CNC cut pat-

terns for the aluminium profiles, while (5) can be generated in about 5 min

and represents details such as the actual profiles, drill holes, slots and support-

ing pins. The parametric model provides construction documentation via a

spread sheet that documents the required aluminium profiles and assembly

documents for use in the factory and on site.

2.2.2 Implementation of the parametric model
The five expressions of the stars are defined as five higher-order functions in

the F# programming language. The use of functional programming for gener-

ative architectural design has been advocated by Leit~ao and Proença (2014)

due to its “expressive power”, i.e. the ease of implementing complex ideas.

Here, this ease is illustrated by the five expressions of the stars. The main logic,

data structure and sphere geometry was implemented in Visual Studiodan in-

tegrated development environmentdand Rhinoceros was used only to auto-

matically draw geometry and save CAD files.

To achieve an interactive programming environment, Tsunami, an F# editor

that can dynamically execute single lines of codes, was integrated with Rhinoc-

eros via a custom plug-in. Combined with the possibility to quickly generate

wireframe models of the cladding, this allowed the development and debug-

ging of the parametric model in an intuitive and efficient manner. The devel-

oper of the parametric model explains that, for him, the expressiveness of

F# and the ability to “live code” in Tsunami combined a “scripting feeling”

with a better computational performance than other approaches to PD

(Rothenthal, 2016b):

The sheer scale and complexity of the cladding on the dome required us to re-

evaluate our parametric design approach. I developed an F# application to

represent and organise all cladding elements of the dome. The switch to F#

from dynamic scripting languages [such as Python] helped to reduce develop-

ment time and execution time. The strongly typed environment, algebraic data
Design Studies Vol 52 No. C September 2017



Figure 10 Free-form opening

of the Morpheus Hotel. Note

the curving exoskeleton and

skewed and triangulated

glazing. Picture Credit:

Zaha Hadid Architects,

Melco Crown Entertainment

Differentiating parametr
types and immutable data [of F#] helped to avoid a whole range of bugs and

fits well the domain of generating static 3d geometry.

In summary, for the LAD, PD was adopted to generate, develop and test the

light-modulating geometry of the cladding elements and to automatically

generate documentation for the digital fabrication and assembly of the clad-

ding. The claddings’ parametric model was implemented in a functional pro-

gramming style using F#, which resulted in a flexible approach to

programming and excellent performance.
2.3 Morpheus Hotel
The Morpheus Hotel, designed by Zaha Hadid Architects, is a 39-story hotel

and casino currently under construction in Macau. It is 160 m high with a

foot print of 52 by 99 m. While its overall shape is a rectangular block, it has

a large, free-form opening in its centre, which is crossed by two footbridges

(Figure 10). This free-form opening has a single symmetry axis. The free-

form area around the central opening is single and double-curved, while the re-

maining facades are flat except for the single-curved edges of the block. The

free-form facade’s glazing is flat: Single-curved areas are approximated with

skewed quadrilaterals and double-curved areas are triangulated. An exoskel-

eton with around 2500 steel members supports the facade. In the free-form

area, the exoskeleton’s structural steel is single-curved and clad with 24 577

aluminium panels, most of which are doubly curved. Unless indicated other-

wise, the information in the below sections stems from (Muscettola et al., 2017).

2.3.1 Architects’ and structural engineers’ parametric
models
To coordinate and rationalize the structural steel and its cladding, Zaha Hadid

Architects developed a parametric model in Grasshopper, a plug-in of Rhinoc-

eros. The Grasshopper model projects the lines of the exoskeleton onto the
ic design 187



Figure 11 Grasshopper model deve

Zaha Hadid Architects

188
free-form facade, converts the projected lines into a mesh, converts this mesh

into a wireframe and generates the cladding’s geometry. The line segments of

the wireframe represent the centrelines of the exoskeleton. Several iterations of

these centrelines were exchanged between the architects and the structural en-

gineers (Buro Happold) to discover and embody design knowledge (e.g. that

the structure can be only single-curved and that the structure’s nodes need

to align to the floors) and to optimize the structure. It might seem helpful to

combine the information from the original mesh and the resulting wireframe

into a half-edge data structure, but apparently, this data structure was not

used. BIM was used only for standard structural elements such as floors, col-

umns and cores.

The architects’ Grasshopper model (Figure 11) generates two representations of

the cladding: A non-rationalized representation for visualization and a rational-

ized one for defining the cladding’s geometry for the structural engineers and

facade contractor. The non-rationalized cladding follows the orientation of

the structural steel, which means that, for the free-form facade, it deviates

from the orientation of the underlying glazing. To absorb this deviation, the

rationalized cladding’s front and back of the are double-curved, following the

glazing, while its top and bottom are flat, following the structural steel. This

parametric model requires a complex Grasshopper definition (Figure 11).

Generating the cladding geometry takes around 5 min for the non-rationalized

cladding and 5 h for the rationalized one. (Probably because it is generated

from offsets of and intersections with the original design surface of the free-

form facade.) Such long generation times limit the interactivity of visual pro-

gramming, which is one of its main advantages over computer programming.

Buro Happold employed PD to generate, optimize and document the around

2500 connections of the exoskeleton’s structural steel (Piermarini, Nuttall,

May, & Janssens, 2016). They also had to ensure that the connections fitted
loped by Zaha Hadid Architects to generate the exoskeleton’s rationalized cladding geometry. Picture Credit:

Design Studies Vol 52 No. C September 2017



Figure 12 Diagram of the “distribu

Picture Credit: Ramon van der He

the web version of this article.)

Differentiating parametr
inside the envelope of the structural steel’s cladding. Grasshopper models

generated individual connections (sorted into around 400 types) and were

linked to Finite Element software via custom scripts. In this process, Buro

Happold used “the software in ways that had not been done before, sometimes

working at the limits of the products’ capabilities” (ibid.).

2.3.2 Contractor’s parametric models
Specialist consultants (Front Inc.) hired by the facade contractor also pre-

pared parametric models of the cladding with Grasshopper, albeit for a

different purpose and with a different strategy. They used the architects’ ratio-

nalized geometry (consisting of 24 577 surfaces) as a starting point for the

detailed design of the free-form area’s cladding, which included the definition

of joints and the placement of stiffeners and connectors to the structural steel.

Front Inc. automatically generated 350 000 fabrication and 150 000 on- and

off-site assembly drawings as well as spreadsheets for construction

documentation.

Instead of creating the cladding’s geometry and documentation with a single

parametric model, Front Inc. adopted a “distributed data model” consisting

of a network of hundreds of parametric models and geometry files (van der

Heijden, Levelle, & Riese, 2015). Each parametric model performs only a sin-

gle operation and stores the result of this operation as geometry, which be-

comes the input for another parametric model (Figure 12). (Some of these

models include small textual programs.) In this way, information and more

detailed geometry are added as the data flow through the network.

To facilitate this flow, Front Inc. have developed a plug-in (Elefront) that aug-

ments geometry with user-defined properties. This plug-in reads, creates and

modifies these properties in Grasshopper. These properties turn geometry

into custom, BIM-like objects that contain non-geometric data. Front Inc.
ted data model”. White boxes indicate data and geometry files and green boxes indicate parametric models.

ijden, Front Inc. (For interpretation of the references to colour in this figure legend, the reader is referred to

ic design 189



190
term this approach “Building Information Generation” and explain that

“when dealing with complex geometry and high degrees of variation [.] tradi-

tional BIM-modelling is not a viable option”.

Front Inc. identify four advantages of the distributed data model: Flexibility,

scalability, verification and collaboration. (1) Flexibility lies in the ability to

easily generate different outputs based, in this case, on the needs of the fabri-

cator. (2) Scalability refers to the ability to deal with large amounts of infor-

mation. In this case, the panels of the cladding consisted of 1 668 301

unique parts. (3) Verification refers to the ease of checking small, individual

geometry files and parametric modelsdboth automatically and manual-

lydcompared to checking complex integrated models. (4) Collaboration refers

to the ability to work on the distributed data model simultaneously (in this

case, with up to five developers). The distributed data model also facilitates

collaboration because it requires a smaller skillset than more complex models.

This last advantage appears especially relevant in that parametric models typi-

cally have only one or two expert authors. (Although, presumably, the design

of the distributed data flow model itself still requires an expert.)

In summary, for the Morpheus Hotel, PD was used to generate, evaluate,

rationalize and embody design knowledge about its exoskeleton geometry

and to automatically generate documentation for the digital fabrication and

assembly of the exoskeleton connections and cladding. Two approaches to

PD were adopted: Single visual dataflow models for generating and rational-

izing the overall geometries for the structural steel and cladding and the struc-

ture’s joints, and a distributed data model for the detailed design and

documentation of the cladding.
3 Discussion
This section discusses similarities between the case studies in terms of their dig-

ital workflows and compares their approaches to PD, using the criteria of flex-

ibility, scalability, verification, collaboration and ease-of-learning.

3.1 Similarities between the case studies
Although the LAD and theMorpheus Hotel are larger and more complex than

the FoU, the case studies nevertheless exhibit similarities that indicate the cur-

rent state-of-the-art in terms of parametric workflows for architecture, engi-

neering and construction (AEC) and offer hints for the future development

of AEC software:

� All case studies have a parametrically designed facade composed of differ-

entiated, digitally prefabricated components. For the FoU and the LAD,

these elements modulate daylight to create a richer architectural experience

and to meet environmental performance requirements.
Design Studies Vol 52 No. C September 2017



Differentiating parametr
� These differentiated components also resolve geometric misalignments be-

tween structure and facade that, for the FoU and the Morpheus Hotel, arise

from free-form geometry.

� All case studies use a simplified, parametrically-generated master model to

coordinate between architects, consultants and contractors. Each master

model represents specific aspects that are relevant to the individual designs:

structure for the FoU, the layering of the stars for the LAD and the exo-

skeleton’s cladding envelope for the Morpheus Hotel. The models are ex-

amples of the easy-to-change, “lighter data-sets and models”

recommended by Holzer (2007) as an alternative to mainstream BIM.

� The generative master models’ employment of geometric primitives such as

lines and surfaces circumvents problems of data exchange and interopera-

bility between AEC software. Compared to the FoU, the LAD and the

Morpheus Hotel required more complex design teams with multiple consul-

tants and contractors. But in all cases, the geometric, easily exchangeable

data generated by the models aided the collaboration between architects,

consultants and contractors.

� The generative master models allow rapid iterations and thus faster collab-

oration between architects, consultants and contractors, which enhances the

integration of performance aspects into the designs. For example, the

models facilitated the coordination between façade and the underlying

structure for the three projects. In the cases of the FoU and the LAD, these

models could be regenerated within minutes, and within hours for the

Morpheus Hotel. The FoU and the LAD also employed generative master

models to integrate daylight considerations into the facades’ density. For

the FoU, this was done directly based on solar irradiation, while the density

of the LAD’s dome was studied extensively by specialised consultants. Buro

Happold developed smaller parametric models to automatically generate

and analyse the structural connections of the Morpheus Hotel based on

its generative master model.

� None of the cases employ mainstream BIM (except for major structural el-

ements). Instead, they develop customized digital workflows to manage

design, prefabrication and assembly. These workflows illustrate the “user-

controlled and process-oriented approach to integration and interopera-

bility” proposed by Toth, Janssen, Stouffs, Chaszar, and Boeykens (2012).

� To ensure flexibility and scalability, these customized workflows apply de-

compositions of the parametric model and efficient algorithms and data

structures. The FoU and the LAD employ the half-edge data structure,

which indicates its suitability for the efficient generation and coordination

of differentiated building components. Both cases clearly separate the defi-

nition of the designs’ geometric shape from its materialization. For the

Morpheus Hotel, the cladding envelope for the exoskeleton serves to

both separate and coordinate the design’s overall shape, structure and

facade.
ic design 191



192
3.2 Comparing the case studies’ parametric design
approaches
The FoU implements a mostly objected-oriented programming style in Iron-

Python, while the LAD implements a functional one in F#. (These styles are

not mutually exclusive. IronPython and F# support both programming styles,

albeit with different emphases.) TheMorpheus Hotel employs both visual pro-

gramming in Grasshopper and distributed visual programming with Grass-

hopper and Elefront (van der Heijden et al., 2015). This section compares

these approaches under the four criteria discussed in section 2.3.2 (flexibility,

scalability, verification and collaboration) and adds ease of learning as a fifth.

3.2.1 Object-oriented programming in IronPython
The FoU’s objected-oriented style utilizes classes and objects that emphasize

the decomposition of the design into form, panelization, pattern and the expres-

sion of building components (using Rhinoceros and IronPython, a Python

variant). This approach ensures flexibility by allowing each of these aspects

to be changed separately. Decomposing the pattern tiles and the half-edge

data structure of the FoU into separate objects allows the swapping of one

set of pattern tiles for another, the easy inclusion of new data, such asdin

the case of the grid-shell described in section 2.1.6dinformation about the un-

derlying steel structure and the straightforward addition of different expres-

sions of the triangular building components, such as 3D-printed components,

folded components and simplified components on a substructure.

The scalability of this approach is demonstrated by the successful generation

of the 11 000 panels. Since the parametric model’s logic is largely separate from

actual 3D geometry, the biggest scale limitation is the size of the generated

files. For the FoU, this limitation was addressed by generating the final geom-

etry and cut sheets separately for each grid line, which also aided in visually

verifying the results. Developing the parametric model on various iterations

of the complete design ensured the correctness of these partial models, which

followed the same parametric logic but contained more geometry such as as-

sembly drawings and cut sheets.

An objected-oriented style enables collaboration by decomposing a program-

ming task into objects with clearly defined responsibilities. This approach is

most commonly adopted in the development of commercial software applica-

tions, but requires programming skills from all participants. For example, in

theory, the decomposition of the FoU’s parametric model would have allowed

one person to develop the model that defines the pattern tiles and another to

develop the model that generates a façade component from a pattern tile and a

mesh triangle. In practice, the FoU’s decomposition allowed the design of its

shape and overall façade density to proceed largely independently from its

materialization in terms of structure and building components.
Design Studies Vol 52 No. C September 2017



Differentiating parametr
In terms of the scalability of the programming language itself one should note

that Python is dynamically typed. In other words, in Python, data types are

not assigned by the programmer but inferred at runtime. This type inference

can make Python slower than statically typed languages (such as C# and

F#), but, in practice, the quality of the employed algorithms and the amount

of created geometry tend to be more critical for scalability. Python’s type infer-

ence makes it easier to learn and apply, but can make it harder to verify the

correctness of a program.
3.2.2 Functional programming in F#
The LAD employs functional programming (using Rhinoceros and F#), which

conceptualizes the parametric model as a hierarchy of nested operations

instead of a decomposition into objects. For functional programming, flexi-

bility consists of the ability to call different combinations of functions to

generate different parts of the geometry at varying levels of detail and for

different purposes. New capabilities can be added by adding functions to the

model. More complex functions describing the LAD’s stars include progres-

sively more details, while simpler functions maintain the possibility for quick

regenerations of the model. Like an object-oriented style, a functional style de-

composes programming tasks into functions which can be implemented by

different developers. Compared to Python, F# is slightly more scalable and

verifiable because F# is statically typed. However, functional programming

and statically typed languages can be harder to learn and slower to write.
3.2.3 Visual programming in grasshopper
Of the four approaches, the single visual programming model employed for

the Morpheus Hotel likely is the least flexible, since, instead of the explicit

decomposition of the objected-oriented, functional and distributed ap-

proaches, it employs only a loose grouping of elements (Figure 11). Explicit

decomposition is possible in Grasshopper, but was not employed in this

case. Davis, Burry, and Burry (2011) show that decomposing Grasshopper

models improves their understandability and thus their ease of verification

and collaboration. Note that, in contrast to the distributed data model dis-

cussed below, this decomposition is applied within a single file. Compared

to textual programming, explicit decomposition is less frequently applied in vi-

sual programming, possibly because it is less integral to visual programming

languages and more cumbersome to apply.

Scalability can also be a problem for this approach, as is demonstrated by the

long generation times for theMorpheus Hotel’s master model. From an exper-

iment with computational designers, Leit~ao, Santos, and Lopes (2012)

conclude that “learning a [textual programming language] takes more time

and effort than learning a [visual programming language], but this effort is
ic design 193



194
quickly recovered when the complexity of the problems becomes sufficiently

large”.

3.2.4 Distributed data model with Grasshopper and
Elefront
The distributed data model of theMorpheus hotel consists of hundreds of Rhi-

noceros files and Grasshopper models. The model is decomposed both into

BIM-like objects (in this case, three-dimensional geometric elements with attri-

butes created with Elefront) and operations (the Grasshopper models). In this

case, flexibility means the ability to make both very small and big changes to

the system (depending on whether the changes are applied “upstream” and

“downstream”). While the other parametric models have this ability as well,

it becomes more pronounced by decomposing the model into separate files.

The distributed data model displays affinities not only with BIM, but also, in a

limited sense, with object-oriented and functional programming. The combi-

nation of properties with geometry and the transfer of properties from simpler

to more complex geometry evokes the object-oriented concepts of encapsula-

tion and inheritance, while the limitation of Grasshopper models to a single

operation evokes a functional programming principle.

A major difference between the distributed data model and other approaches

discussed in this paper is that it creates geometry not only at the end of the

computation, but in numerous in-between steps. In other words, the distrib-

uted data model presents an alternative to avoiding geometry creation as an

approach to scalability. Distributed geometry creation affords collaboration

and easier verification, but is more time-consuming and, as Front Inc. point

out, presents its own challenges and skill requirements for designing and man-

aging the data flow through the different files (Muscettola et al., 2017).
4 Conclusion
Compared to the theoretical description of PD in terms of formal generation

and exploration, the case studies emphasize more practical and specialised ap-

plications, such as differentiating the designs’ building components, inte-

grating performance aspects and generating design documentation. Here,

the strength of PD does not lie in generating many design variants, but in real-

izing highly specific, differentiated, rule-based designs. In that sense, the case

studies signify the “normalization” of PD and its increasing integration into

different aspects of architectural and engineering practice.

PD thinking thus expands its role from being mostly focused on representing,

generating and evaluating designs to also managing and materializing them,

especially when these designs employ differentiated building components.

This expansion implies that, increasingly, several participants in a design
Design Studies Vol 52 No. C September 2017



Differentiating parametr
processdincluding architects, consultants and contractorsdpractice PD,

which reinforces the need for software- and programming language-

independent methods of data exchange.

In comparing the PD approaches of the FoU, the LAD and theMorpheus Ho-

tel, we find that both textual and visual programming have been applied suc-

cessfully to the realization of highly differentiated buildings, using objected-

oriented, functional and distributed programming styles. However, it appears

that, while visual programming has a flatter learning curve, in requires addi-

tional care and effort to achieve a flexible and scalable decomposition of the

parametric model.

Skill is an important barrier for the wider adoption of textual programming

and distributed (or decomposed) visual programming in practice, despite the

advantages of these approaches. Leit~ao et al. (2012) present an attempt to

overcome this barrier by combining different textual programming languages

and AEC software into an interoperable framework called Rosetta.

The fact that all parametric models rely on the same software, Rhinoceros, for

geometry generation and graphical representation but employ different, visual

and textual, programming languages and styles emphasizes customizability as

an important property for future AEC software. By allowing visual and tex-

tual programming, this customizability also addresses different levels of skill.

The creation of customized, attributed geometry in the case of the Morpheus

Hotel is notable and could be combined with other, non-distributed ap-

proaches. The fact that the cases largely avoid the IFC classes that lie at the

heart of BIM indicates that those classes are not necessary to ensure data ex-

change and likely insufficiently reflect the thinking of parametric designers.

Decomposition of design moves is a powerful method for creative parametric

designers. It supports flexibility by allowing easier changes to parametric

models and enables the exchange of design data between different software

and stakeholders. Determining decompositions that ensure flexibility,

designing workflows that harnesses such decompositions to enable coordina-

tion and collaboration in a design team and selecting appropriate algorithms

and data structures that ensure scalability are aspects of PD thinking that tran-

scend applied PD skills in using software or programming languages. This

insight clarifies the necessity of more conceptual approaches to PD in, for

example, architectural education, in addition to the need for and in support

of more customizable and interoperable PD and BIM tools and workflows.

Acknowledgments
We thank the anonymous reviewers for fruitful interactions that were instru-

mental to shaping this paper. We also thank Goswin Rothenthal for his
ic design 195



196
clarifications on the parametric master model of the LAD and Ramon van der

Heijden for his clarifications on the distributed data model of the Morpheus

Hotel. The Future of Us and related projects were designed by the Advanced

Architecture Laboratory at Singapore University of Technology and Design,

directed by Professor Thomas Schroepfer.
References
Abelson, H., & Sussman, G. J. (1996). Structure and interpretation of computer

programs (2nd ed.). Cambridge, Mass: The MIT Press.
Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., & Levy, B. (2010). Polygon mesh

processing. Natick, MA: A K Peters.
Davis, D., Burry, J., & Burry, M. (2011). Understanding visual scripts: Improving

collaboration through modular programming. International Journal of Archi-
tectural Computing, 9(4), 361e376.

Hesselgren, L., Charitou, R., & Dritsas, S. (2007). The bishopsgate tower case
study. International Journal of Architectural Computing, 5(1), 61e81.

Holzer, D. (2007). Are you talking to Me? Why BIM alone is not the answer. In In

proceedings of the fourth international conference of the association of architec-
ture schools of Australasia.

Hudson, R. (2010). Strategies for parametric design in architecture: An application

of practice led research. (Ph.D. Dissertation). Bath, UK: University of Bath.
Imbert, F., Frost, K. S., Fisher, A., Witt, A., Tourre, V., & Koren, B. (2013).

Concurrent geometric, structural and environmental Design: Louvre Abu

Dhabi. In L. Hesselgren, S. Sharma, J. Wallner, N. Baldassini, P. Bompas,
& J. Raynaud (Eds.), Advances in architectural geometry 2012 (pp. 77e90).
Springer Vienna.

Janssen, P., & Chen, K. W. (2011). Visual dataflow modelling: A comparison of

three systems. In Proceedings of the 14th international conference on computer
aided architectural design futures (pp. 801e816), (Liege, BE).

Leit~ao, A., & Proença, S. (2014). On the expressive power of programming lan-

guages for generative design. InThompson, E M. (Ed.). (2014). Fusion e Pro-
ceedings of the 32nd eCAADe conference, Vol. 1 (pp. 257e266). Newcastle
upon Tyne, UK: Northumbria University.

Leit~ao, A., Santos, L., & Lopes, J. (2012). Programming languages for generative
design: A comparative study. International Journal of Architectural Computing,
10(1), 139e162.

Muscettola, V., Salvi, M., Mutyaba, M., van der Heijden, R., Tai, A., &

Levelle, E. (2017). The Morpheus Hotel: From design to production. Retrieved
from. www.rhino3d.com/go/morpheus.

Oxman, R. (2006). Theory and design in the first digital age. Design Studies, 27(3),

229e265.
Park, K., & Holt, N. (2010). Parametric design process of a complex building in

practice using programmed code as master model. International Journal of

Architectural Computing, 8(3), 359e376.
Piermarini, E., Nuttall, H., May, R., & Janssens, V. M. (2016). City of dreams,

Macau: Making the vision viable. The Structural Engineer, 94(3), 56e67.

Poirriez, C., Wortmann, T., Hudson, R., & Bouzida, Y. (2016). From complex
shape to simple construction: Fast track design of “the future of us” gridshell
in Singapore. In K. Kawaguchi, M. Ohsaki, & T. Takeuchi (Eds.), Proceedings
of the IASS Annual symposium 2016 “spatial structures in the 21st century.”.

Tokyo, JP: IASS.
Design Studies Vol 52 No. C September 2017

http://refhub.elsevier.com/S0142-694X(17)30035-2/sref1
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref1
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref2
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref2
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref3
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref3
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref3
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref3
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref5
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref5
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref5
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref6
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref6
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref6
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref7
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref7
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref8
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref8
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref8
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref8
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref8
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref8
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref9
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref9
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref9
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref9
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref10
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref10
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref10
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref10
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref10
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref10
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref10
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref10
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref11
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref11
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref11
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref11
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref11
http://www.rhino3d.com/go/morpheus
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref13
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref13
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref13
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref14
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref14
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref14
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref14
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref15
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref15
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref15
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref16
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref16
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref16
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref16
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref16


Differentiating parametr
Rothenthal, G. (2016a). The 3D geometry of Louvre Abu Dhabi. In Presented at
the fsharpConf 2016. Retrieved from. channel9.msdn.com/Events/FSharp-
Events/fsharpConf-2016/The-3D-Geometry-of-Louvre-Abu-Dhabi.

Rothenthal, G. (2016b). We see great potential for F# to be used as a scripting lan-

guage in CAD; it fits very well for computational design challenges in the con-
struction industry. Retrieved from. http://fsharp.org/testimonials/#goswin-1.

Shepherd, P., Hudson, R., & Hines, D. (2011). Aviva stadium: A parametric suc-

cess. International Journal of Architectural Computing, 9(2), 167e185.
Toth, B., Janssen, P., Stouffs, R., Chaszar, A., & Boeykens, S. (2012). Custom

digital workflows: A new framework for design analysis integration. Interna-

tional Journal of Architectural Computing, 10(4), 481e500.
Tourre, V., & Miguet, F. (2010). Lighting intention materialization with a light-

based parametric design model. International Journal of Architectural

Computing, 8(4), 507e524.
van der Heijden, R., Levelle, E., & Riese, M. (2015). Parametric building informa-

tion generation for design and construction. In ACADIA 2105: Computational
Ecologies: Design in the Anthropocene (pp. 417e429). ACADIA.

Whitehead, H. (2003). Laws of form. In B. Kolarevic (Ed.), Architecture in the
digital Age: Design and manufacturing (pp. 89e113). Taylor & Francis.

Woodbury, R. F. (2010). Elements of parametric design. London; New York:

Routledge.
ic design 197

http://channel9.msdn.com/Events/FSharp-Events/fsharpConf-2016/The-3D-Geometry-of-Louvre-Abu-Dhabi
http://channel9.msdn.com/Events/FSharp-Events/fsharpConf-2016/The-3D-Geometry-of-Louvre-Abu-Dhabi
http://fsharp.org/testimonials/#goswin-1
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref19
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref19
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref19
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref20
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref20
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref20
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref20
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref21
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref21
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref21
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref21
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref4
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref4
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref4
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref4
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref22
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref22
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref22
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref23
http://refhub.elsevier.com/S0142-694X(17)30035-2/sref23

	Differentiating parametric design: Digital workflows in contemporary architecture and construction
	1. Background
	2. Case studies
	2.1. The Future of Us
	2.1.1. Half-edge mesh representation
	2.1.2. Pattern tiles and envelope density requirements
	2.1.3. Digital and 3D-printed model
	2.1.4. Prototypical wall screens
	2.1.5. Patterned grid shell cladding
	2.1.6. Integrating the parametric model with a structural master model
	2.1.7. Constructing the grid shell panels

	2.2. Louvre Abu Dhabi
	2.2.1. Parametric model
	2.2.2. Implementation of the parametric model

	2.3. Morpheus Hotel
	2.3.1. Architects' and structural engineers' parametric models
	2.3.2. Contractor's parametric models


	3. Discussion
	3.1. Similarities between the case studies
	3.2. Comparing the case studies' parametric design approaches
	3.2.1. Object-oriented programming in IronPython
	3.2.2. Functional programming in F#
	3.2.3. Visual programming in grasshopper
	3.2.4. Distributed data model with Grasshopper and Elefront


	4. Conclusion
	Acknowledgements
	References


